2022届江苏省泰州市重点中学中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.的相反数是( )
A. B.﹣ C.﹣ D.
2.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
3.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
4.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( ).
A. B. C. D.
5.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
6.如图,AB是的直径,点C,D在上,若,则的度数为
A. B. C. D.
7.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
8.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A.110 B.158 C.168 D.178
9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
10.不等式5+2x <1的解集在数轴上表示正确的是( ).
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
12.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).
13.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
14.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.
15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .
16.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
17.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
三、解答题(共7小题,满分69分)
18.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
19.(5分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
(1)把△ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 .
20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
21.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
22.(10分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
(参考数据:sin15°=,cos15°=,tan15°=2﹣)
(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.
23.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
24.(14分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.
【详解】
解:的相反数是﹣.
故选:B.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
2、C
【解析】
从正面看到的图形如图所示:
,
故选C.
3、B
【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
【详解】
∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
∴(a﹣b)2=a2﹣2ab+b2,
故选B.
【点睛】
本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
4、C
【解析】
分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
解答:解:掷骰子有6×6=36种情况.
根据题意有:4n-m2<0,
因此满足的点有:n=1,m=3,4,5,6,
n=2,m=3,4,5,6,
n=3,m=4,5,6,
n=4,m=5,6,
n=5,m=5,6,
n=6,m=5,6,
共有17种,
故概率为:17÷36=.
故选C.
点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.
5、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
6、B
【解析】
试题解析:连接AC,如图,
∵AB为直径,
∴∠ACB=90°,
∴
∴
故选B.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.
7、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
【点睛】
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
8、B
【解析】
根据排列规律,10下面的数是12,10右面的数是14,
∵8=2×4−0,22=4×6−2,44=6×8−4,
∴m=12×14−10=158.
故选C.
9、C
【解析】
分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
详解:∵点I是△ABC的内心,
∴∠BAC=2∠IAC、∠ACB=2∠ICA,
∵∠AIC=124°,
∴∠B=180°﹣(∠BAC+∠ACB)
=180°﹣2(∠IAC+∠ICA)
=180°﹣2(180°﹣∠AIC)
=68°,
又四边形ABCD内接于⊙O,
∴∠CDE=∠B=68°,
故选C.
点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
10、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
12、1.
【解析】
设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.
故答案为1.
13、1.
【解析】
分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
详解:∵==,解得:旗杆的高度=×30=1.
故答案为1.
点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
14、100
【解析】
先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.
解:如图,作AE⊥BC于点E.
∵∠EAB=30°,AB=100,
∴BE=50,AE=50.
∵BC=200,
∴CE=1.
在Rt△ACE中,根据勾股定理得:AC=100.
即此时王英同学离A地的距离是100米.
故答案为100.
解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
15、2
【解析】
试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
考点:反比例函数系数k的几何意义.
16、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
17、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
三、解答题(共7小题,满分69分)
18、(1)y=-(x-3)2+5(2)5
【解析】
(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
【详解】
(1)设此抛物线的表达式为y=a(x-3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
∴此抛物线的表达式为
(2)∵A(1,3),抛物线的对称轴为直线x=3,
∴B(5,3).
令x=0,则
∴△ABC的面积
【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
19、(1)BD,CE的关系是相等;(2)或;(3)1,1
【解析】
分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
详解:(1)BD,CE的关系是相等.
理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD≌△ACE,
∴BD=CE;
故答案为相等.
(2)作出旋转后的图形,若点C在AD上,如图2所示:
∵∠EAC=90°,
∴CE=,
∵∠PDA=∠AEC,∠PCD=∠ACE,
∴△PCD∽△ACE,
∴,
∴PD=;
若点B在AE上,如图2所示:
∵∠BAD=90°,
∴Rt△ABD中,BD=,BE=AE﹣AB=2,
∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
∴△BAD∽△BPE,
∴,即,
解得PB=,
∴PD=BD+PB=+=,
故答案为或;
(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
如图3所示,分两种情况讨论:
在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
①当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,CE==4,
在Rt△DAE中,DE=,
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=1,
在Rt△PDE中,PD=,
即旋转过程中线段PD的最小值为1;
②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
此时,DP'=4+3=1,
即旋转过程中线段PD的最大值为1.
故答案为1,1.
点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
20、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
试题解析:(1)20÷20%=100,
九年级参赛作文篇数对应的圆心角=360°×=126°;
100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,
其中A代表七年级获奖的特等奖作文.
画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
∴P(七年级特等奖作文被选登在校刊上)= .
考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
21、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
22、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
【详解】
解:(1)EF∥BD.
证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
∴DE=BF,
又∵DE∥BF,
∴四边形DBFE是平行四边形,
∴EF∥DB;
(2)①AE=AM.
∵EF∥BD,
∴∠F=∠ABD=45°,
∴MB=BF=DE,
∵正方形ABCD,
∴∠ADC=∠ABC=90°,AB=AD,
∴△ADE≌△ABM,
∴AE=AM;
②△AEM能为等边三角形.
若△AEM是等边三角形,则∠EAM=60°,
∵△ADE≌△ABM,
∴∠DAE=∠BAM=15°,
∵tan∠DAE=,AD=8,
∴2﹣=,
∴DE=16﹣8,
即当DE=16﹣8时,△AEM是等边三角形;
(3)△ANF的面积不变.
设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,
∵CD∥AB,
∴△DEN∽△BNA,
∴=,
∴,
∴PN=,
∴S△ANF=AF×PN=×(x+8)×=32,
即△ANF的面积不变.
【点睛】
本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
23、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
24、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
江苏省泰州市兴化市2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份江苏省泰州市兴化市2021-2022学年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
江苏省泰州市泰兴市黄桥中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份江苏省泰州市泰兴市黄桥中学2021-2022学年中考数学对点突破模拟试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果是,下列各数中比﹣1小的数是,有下列四种说法,某排球队名场上队员的身高等内容,欢迎下载使用。
2022年黄山市重点中学中考数学对点突破模拟试卷含解析: 这是一份2022年黄山市重点中学中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。