2022届吉林省吉林市第六十一中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42° B.∠NOP=132°
C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
2.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
3.的值是
A. B. C. D.
4.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是( )
A.10 B. C. D.15
5.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为( )
A. B. C. D.
6.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
7.已知,下列说法中,不正确的是( )
A. B.与方向相同
C. D.
8.下列四个图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
9.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
10.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
12.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.
13.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.
14.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.
15.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.
16.对于函数y= ,当函数y﹤-3时,自变量x的取值范围是____________ .
三、解答题(共8题,共72分)
17.(8分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.
18.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
19.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)求乙组加工零件总量的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
20.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.
21.(8分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
22.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
23.(12分)如图,已知一次函数y=x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.
填空:n的值为 ,k的值为 ; 以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标; 考察反比函数的图象,当时,请直接写出自变量的取值范围.
24.如图,已知二次函数的图象经过,两点.
求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
考点:角的度量.
2、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
3、D
【解析】
根据特殊角三角函数值,可得答案.
【详解】
解:,
故选:D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
4、C
【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
【详解】
A,C之间的距离为6,
2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
∴m=6,
2020﹣2017=3,故点Q与点P的水平距离为3,
∵
解得k=6,
双曲线
1+3=4,
即点Q离x轴的距离为,
∴
∵四边形PDEQ的面积是.
故选:C.
【点睛】
考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
5、B
【解析】
按照解一元一次不等式的步骤求解即可.
【详解】
去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.
【点睛】
数形结合思想是初中常用的方法之一.
6、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
7、A
【解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
【详解】
A、,故该选项说法错误
B、因为,所以与的方向相同,故该选项说法正确,
C、因为,所以,故该选项说法正确,
D、因为,所以;故该选项说法正确,
故选:A.
【点睛】
本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
8、D
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形.
故选D.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
9、C
【解析】
根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
【详解】
对于数据:6,3,4,7,6,0,1,
这组数据按照从小到大排列是:0,3,4,6,6,7,1,
这组数据的平均数是: 中位数是6,
故选C.
【点睛】
本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
10、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
列表如下:
-2
-1
1
2
-2
2
-2
-4
-1
2
-1
-2
1
-2
-1
2
2
-4
-2
2
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
12、b<9
【解析】
由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围.
【详解】
解:方程有两个不相等的实数根,
,
解得:.
【点睛】
本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”.
13、1
【解析】
根据已知DE∥BC得出=进而得出BC的值
【详解】
∵DE∥BC,AD=6,BD=2,DE=3,
∴△ADE∽△ABC,
∴,
∴,
∴BC=1,
故答案为1.
【点睛】
此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.
14、
【解析】
如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
【详解】
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC,tan∠BOC==,
∴AB=2OA,
∵,OB=,
∴OA=2,AB=2.∵OA′由OA翻折得到,
∴OA′= OA=2.
如图,过点A′作A′D⊥x轴与点D;
设A′D=a,OD=b;
∵四边形ABCO为矩形,
∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
设AB=OC=a,BC=AO=b;
∵OB=,tan∠BOC=,
∴,
解得: ;
由题意得:A′O=AO=2;△ABO≌△A′BO;
由勾股定理得:x2+y2=2①,
由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
联立①②并解得:x=,y=.
故答案为(−,)
【点睛】
该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
15、
【解析】
试题分析:上方的正六边形涂红色的概率是,故答案为.
考点:概率公式.
16、-
根据反比例函数的性质:y随x的增大而减小去解答.
【详解】
解:函数y= 中,y随x的增大而减小,当函数y﹤-3时
又函数y= 中,
故答案为:-
此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.
三、解答题(共8题,共72分)
17、(1)见解析;(2)见解析;(3)AG=1.
【解析】
(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
【详解】
(1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵C是劣弧AE的中点,
∴,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:∵CG∥AE,
∴∠FAD=∠G,
∵sinG=0.6,
∴sin∠FAD==0.6,
∵∠CDA=90°,AF=CF=4,
∴DF=2.4,
∴AD=3.2,
∴CD=CF+DF=6.4,
∵AF∥CG,
∴,
∴
∴DG=,
∴AG=DG﹣AD=1.
【点睛】
本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.
18、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
19、 (1)见解析(2)300(3)2小时
【解析】
解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
根据题意,得,解得.
所以,甲组加工的零件数量y与时间x的函数关系式为:.
(2)当时,.
因为更换设备后,乙组工作效率是原来的2倍,
所以,.解得.
(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为
.
当0≤x≤2时,.解得.舍去.
当2
当3
所以,再经过2小时恰好装满第2箱.
20、 (1)证明见解析;(2)
【解析】
试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
试题解析:(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
即CD⊥AB,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵D点在⊙O上,
∴DE为⊙O的切线;
(2)解:∵∠A=∠B=30°,BC=4,
∴CD=BC=2,BD=BC•cos30°=2,
∴AD=BD=2,AB=2BD=4,
∴S△ABC=AB•CD=×4×2=4,
∵DE⊥AC,
∴DE=AD=×2=,
AE=AD•cos30°=3,
∴S△ODE=OD•DE=×2×=,
S△ADE=AE•DE=××3=,
∵S△BOD=S△BCD=×S△ABC=×4=,
∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
21、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
22、30元
【解析】
试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
解:设第一批盒装花的进价是x元/盒,则
2×=,
解得 x=30
经检验,x=30是原方程的根.
答:第一批盒装花每盒的进价是30元.
考点:分式方程的应用.
23、 (1)3,1;(2) (4+,3);(3)或
【解析】
(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数,得到k的值为1;
(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,3),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;
(3)根据反比函数的性质即可得到当y≥-2时,自变量x的取值范围.
【详解】
解:(1)把点A(4,n)代入一次函数y=x-3,可得n=×4-3=3;
把点A(4,3)代入反比例函数,可得3=,
解得k=1.
(2)∵一次函数y=x-3与x轴相交于点B,
∴x-3=3,
解得x=2,
∴点B的坐标为(2,3),
如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,
∵A(4,3),B(2,3),
∴OE=4,AE=3,OB=2,
∴BE=OE-OB=4-2=2,
在Rt△ABE中,
AB=,
∵四边形ABCD是菱形,
∴AB=CD=BC=,AB∥CD,
∴∠ABE=∠DCF,
∵AE⊥x轴,DF⊥x轴,
∴∠AEB=∠DFC=93°,
在△ABE与△DCF中,
,
∴△ABE≌△DCF(ASA),
∴CF=BE=2,DF=AE=3,
∴OF=OB+BC+CF=2++2=4+,
∴点D的坐标为(4+,3).
(3)当y=-2时,-2=,解得x=-2.
故当y≥-2时,自变量x的取值范围是x≤-2或x>3.
24、见解析
【解析】
(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
【详解】
(1)把,代入得
,
解得.
∴这个二次函数解析式为.
(2)∵抛物线对称轴为直线,
∴的坐标为,
∴,
∴.
【点睛】
本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
2024年吉林省中考数学模拟预测题(一)(原卷版+解析版): 这是一份2024年吉林省中考数学模拟预测题(一)(原卷版+解析版),文件包含2024年吉林省中考数学模拟预测题一原卷版docx、2024年吉林省中考数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2022年哈尔滨市第六十九中学中考数学模拟预测试卷含解析: 这是一份2022年哈尔滨市第六十九中学中考数学模拟预测试卷含解析,共20页。试卷主要包含了如图所示,有一条线段是.,某商品的进价为每件元等内容,欢迎下载使用。
2022届吉林实验中学中考数学模拟预测题含解析: 这是一份2022届吉林实验中学中考数学模拟预测题含解析,共19页。试卷主要包含了如图,一段抛物线等内容,欢迎下载使用。