2022届鲍沟中学中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知两点都在反比例函数图象上,当时, ,则的取值范围是( )
A. B. C. D.
2.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是( )
A.﹣2 B. C.2 D.4
4.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B.a C. D.
5.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )
A. B.1 C.2 D.4
6.对于反比例函数y=﹣,下列说法不正确的是( )
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大
C.图象经过点(1,﹣2)
D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2
7.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )
A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
8.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
9.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( )
A. B. C. D.
10.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是( )
A.①② B.②③ C.①④ D.③④
11.一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2π B.16+4π C.16+8π D.16+12π
12.下列各式计算正确的是( )
A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若一组数据1,2,3,的平均数是2,则的值为______.
14.函数y=中自变量x的取值范围是________,若x=4,则函数值y=________.
15.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .
16.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.
17.如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_____________.
18.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
20.(6分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
(2)求选出的(m,n)在二、四象限的概率.
21.(6分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=DE,求tan∠ABD的值.
22.(8分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
23.(8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.
24.(10分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)
25.(10分)(1)化简:
(2)解不等式组.
26.(12分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?
27.(12分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据反比例函数的性质判断即可.
【详解】
解:∵当x1<x2<0时,y1<y2,
∴在每个象限y随x的增大而增大,
∴k<0,
故选:B.
【点睛】
本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
2、C
【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.
【详解】
∵y随x的增大而减小,∴一次函数y=kx+b单调递减,
∴k<0,
∵kb<0,
∴b>0,
∴直线经过第二、一、四象限,不经过第三象限,
故选C.
【点睛】
本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.
3、C
【解析】
分析:将x=-2代入方程即可求出a的值.
详解:将x=-2代入可得:4a-2a-4=0, 解得:a=2,故选C.
点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.
4、A
【解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
∴MG=CG=×a=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
5、A
【解析】
在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
【详解】
在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2
,得到AB+AO=2,
设AB=x,则AO=2-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
整理得:x2-2x+4=0,
解得x1=+,x2=-,
∴AB=+,OA=-,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE==(+)),
∴k=-DE•OE=-(+))×(-))=1.
∴S△AOC=DE•OE=,
故选A.
【点睛】
本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
6、D
【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.
【详解】
A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;
B. k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;
C.∵,∴点(1,−2)在它的图象上,故本选项正确;
D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2
【点睛】
考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.
7、C
【解析】
根据平行线性质和全等三角形的判定定理逐个分析.
【详解】
由,得∠B=∠D,
因为,
若≌,则还需要补充的条件可以是:
AB=DE,或∠E=∠A, ∠EFD=∠ACB,
故选C
【点睛】
本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
8、B
【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
9、B
【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
【详解】
画树状图如下:
由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
故选B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
10、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax2+bx,则2=9a+1b
∴b=,
∴a﹣b=a﹣()=4a﹣>-,故②正确;
由正弦定义sinα=,则③正确;
不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x≥1或x≤0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sinα公式,不等式的解集.
11、D
【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
故选:D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
12、C
【解析】
根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
【详解】
A.a4•a3=a7,故A错误;
B.3a•4a=12a2,故B错误;
C.(a3)4=a12,故C正确;
D.a12÷a3=a9,故D错误.
故选C.
【点睛】
本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据这组数据的平均数是1和平均数的计算公式列式计算即可.
【详解】
∵数据1,1,3,的平均数是1,
∴,
解得:.
故答案为:1.
【点睛】
本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
14、x≥3 y=1
【解析】
根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y=1.
15、2
【解析】
∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
∴Rt△DBE中,BE=2DE=2。
16、-2
根据图象可直接得到y1>y2>0时x的取值范围.
【详解】
根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
故答案为﹣2<x<﹣0.5.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
17、
【解析】
分析:
由已知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.
详解:
∵反比例函数的图象经过点A(2,y1)与B(3,y2),
∴2y1=k,3y2=k,
∴2y1=3y2,
∴.
故答案为:.
点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.
18、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
20、(1)详见解析;(2)P=.
【解析】
试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
试题解析:
(1)画树状图得:
则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
∴所选出的m,n在第二、三四象限的概率为:P==
点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
21、(1)90°;(1)证明见解析;(3)1.
【解析】
(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.
【详解】
解:(1)解:∵对角线AC为⊙O的直径,
∴∠ADC=90°,
∴∠EDC=90°;
(1)证明:连接DO,
∵∠EDC=90°,F是EC的中点,
∴DF=FC,
∴∠FDC=∠FCD,
∵OD=OC,
∴∠OCD=∠ODC,
∵∠OCF=90°,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切线;
(3)解:如图所示:可得∠ABD=∠ACD,
∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,
∴∠DCA=∠E,
又∵∠ADC=∠CDE=90°,
∴△CDE∽△ADC,
∴,
∴DC1=AD•DE
∵AC=1DE,
∴设DE=x,则AC=1x,
则AC1﹣AD1=AD•DE,
期(1x)1﹣AD1=AD•x,
整理得:AD1+AD•x﹣10x1=0,
解得:AD=4x或﹣4.5x(负数舍去),
则DC=,
故tan∠ABD=tan∠ACD=.
22、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
23、(1)详见解析(2)
【解析】
设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.
【详解】
(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:
由上图可知,上述试验共有8种等可能结果;
(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.
∴P(一次打开锁)=.
【点睛】
如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
24、7.3米
【解析】
:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可.
【详解】
解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,
∴AH=HF,设AH=HF=x,则EF=2x,EH=x,
在Rt△AEB中,∵∠E=30°,AB=5米,
∴AE=2AB=10米,
∴x+x=10,
∴x=5﹣5,
∴EF=2x=10﹣10≈7.3米,
答:E与点F之间的距离为7.3米
【点睛】
本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.
25、(1);(2)﹣2<x<1
【解析】
(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
(1)原式=;
(2)不等式组整理得:,
则不等式组的解集为﹣2<x<1.
【点睛】
此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.
26、450m.
【解析】
若要使A、C、E三点共线,则三角形BDE是以∠E为直角的三角形,利用三角函数即可解得DE的长.
【详解】
解:,,
,
在中,,,
,
.
答:另一边开挖点离,正好使,,三点在一直线上.
【点睛】
本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.
27、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
试题解析:(1)证明:∵,
∴.
∵CD平分,BC=BD,
∴,.
∴.
∴∥.
∴.
∵AB是⊙O的直径,
∴BD是⊙O的切线.
(2)连接AC,
∵AB是⊙O直径,
∴.
∵,
可得.
∴
在Rt△CEB中,∠CEB=90°,由勾股定理得
∴.
∵,∠EFC =∠BFD,
∴△EFC∽△BFD.
∴.
∴.
∴BF=1.
考点:切线的判定,相似三角形,勾股定理
2024年山东省+枣庄市+滕州市鲍沟镇鲍沟中学+学业水平考试模拟练习(一)+九年级数学试题: 这是一份2024年山东省+枣庄市+滕州市鲍沟镇鲍沟中学+学业水平考试模拟练习(一)+九年级数学试题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
山东省滕州市鲍沟镇鲍沟中学2023-2024学年九年级上学期开学预习检测数学试题: 这是一份山东省滕州市鲍沟镇鲍沟中学2023-2024学年九年级上学期开学预习检测数学试题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年山东省枣庄市滕州市鲍沟中学七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年山东省枣庄市滕州市鲍沟中学七年级(下)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。