2022届安徽省淮南市大通区(东部地区)重点名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
2.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是( )
A. B. C. D.
3.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )
A. B. C. D.
4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
5.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
成绩(米) | ||||||
人数 |
则这名运动员成绩的中位数、众数分别是( )
A. B. C., D.
6.下列事件是确定事件的是( )
A.阴天一定会下雨
B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
7.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
8.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
A.3×109 B.3×108 C.30×108 D.0.3×1010
9.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户) | 1 | 2 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A.中位数是50 B.众数是51 C.方差是42 D.极差是21
10.下列事件中必然发生的事件是( )
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
二、填空题(共7小题,每小题3分,满分21分)
11.分式方程=1的解为_________.
12.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)
13.把16a3﹣ab2因式分解_____.
14.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
15.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.
16.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
17.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
三、解答题(共7小题,满分69分)
18.(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
19.(5分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.
20.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出 , ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
21.(10分)先化简,再求值:,其中x=.
22.(10分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
23.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
24.(14分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
2、A
【解析】
从正面看第一层是三个小正方形,第二层左边一个小正方形,
故选:A.
3、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
故选C.
4、A
【解析】
根据轴对称图形的概念判断即可.
【详解】
A、是轴对称图形;
B、不是轴对称图形;
C、不是轴对称图形;
D、不是轴对称图形.
故选:A.
【点睛】
本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
5、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
6、D
【解析】
试题分析:找到一定发生或一定不发生的事件即可.
A、阴天一定会下雨,是随机事件;
B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
故选D.
考点:随机事件.
7、D
【解析】
根据抛物线和直线的关系分析.
【详解】
由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
故选D
【点睛】
考核知识点:反比例函数图象.
8、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
将数据30亿用科学记数法表示为,
故选A.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
9、C
【解析】
试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
故选C.
考点:1.方差;2.中位数;3.众数;4.极差.
10、C
【解析】
直接利用随机事件、必然事件、不可能事件分别分析得出答案.
【详解】
A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
故选C.
【点睛】
此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、x=1
【解析】
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
详解:两边都乘以x+4,得:3x=x+4,
解得:x=1,
检验:x=1时,x+4=6≠0,
所以分式方程的解为x=1,
故答案为:x=1.
点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
12、①②③⑤
【解析】
根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
【详解】
由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,
∵
∴2a+b>0,
故③正确,
由图象可得顶点纵坐标小于﹣2,则④错误,
当x=1时,y=a+b+c<0,故⑥错误
故答案为:①②③⑤
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
13、a(4a+b)(4a﹣b)
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:16a3-ab2
=a(16a2-b2)
=a(4a+b)(4a-b).
故答案为:a(4a+b)(4a-b).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
14、﹣18
【解析】
要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
【详解】
a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
=ab(a﹣b)2,
当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
故答案为:﹣18.
【点睛】
本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
15、.
【解析】
过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=2x,则BD=x,
在Rt△OCE中,∠COE=60°,则OE=x,CE=,
则点C坐标为(x,),
在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,
则点D的坐标为(,),
将点C的坐标代入反比例函数解析式可得:,
将点D的坐标代入反比例函数解析式可得:,
则,
解得:,(舍去),
故=.故答案为.
考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.
16、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
17、
【解析】
试题分析:,解得r=.
考点:弧长的计算.
三、解答题(共7小题,满分69分)
18、(1)300,10; (2)有800人;(3) .
【解析】试题分析:
试题解析:(1)120÷40%=300,
a%=1﹣40%﹣30%﹣20%=10%,
∴a=10,
10%×300=30,
图形如下:
(2)2000×40%=800(人),
答:估计该校选择“跑步”这种活动的学生约有800人;
(3)画树状图为:
共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
19、(1)25π;(2)CD1=,CD2=7
【解析】
分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;
(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.
详解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB是⊙O的直径,
∴AC=8,BC=1,
∴AB=10,
∴⊙O的面积=π×52=25π.
(2)有两种情况:
①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,
作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,
∵CE=,
∴OF= CE=,
∴,
∵=,
∴,
∴,
∴;
②如图所示,当点D位于下半圆中点D2时,
同理可求.
∴CD1=,CD2=7
点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.
20、(1)100,35;(2)补全图形,如图;(3)800人
【解析】
(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
【详解】
解:(1)∵被调查总人数为m=10÷10%=100人,
∴用支付宝人数所占百分比n%= ,
∴m=100,n=35.
(2)网购人数为100×15%=15人,
微信人数所占百分比为,
补全图形如图:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
【点睛】
本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
21、1+
【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
【详解】
解:原式
当时,
原式=
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
22、.
【解析】
试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
试题解析:解:画树状图如答图:
∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
∴P(A,C两个区域所涂颜色不相同)=.
考点:1.画树状图或列表法;2.概率.
23、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
24、(1)证明见解析;(2);(3).
【解析】
由余角的性质可得,即可证∽;
由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
【详解】
证明:,
又,
又,
∽
∽,
又,,
如图,延长AD与BG的延长线交于H点
,
∽
∴
,由可知≌
,
,
代入上式可得,
∽,
,,
∴
,,
平分
又平分,
,
是等腰直角三角形.
∴.
【点睛】
本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
安徽省淮南市大通区(东部地区)重点名校2022年中考五模数学试题含解析: 这是一份安徽省淮南市大通区(东部地区)重点名校2022年中考五模数学试题含解析,共28页。试卷主要包含了正比例函数y=,如图,在中,等内容,欢迎下载使用。
2022年安徽省淮南市大通区(东部地区)中考数学最后冲刺模拟试卷含解析: 这是一份2022年安徽省淮南市大通区(东部地区)中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了下面四个几何体,下列计算正确的是, 1分等内容,欢迎下载使用。
2022届云南弥勒市重点名校十校联考最后数学试题含解析: 这是一份2022届云南弥勒市重点名校十校联考最后数学试题含解析,共18页。