2021-2022学年新疆沙湾县中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
2.tan45°的值等于( )
A. B. C. D.1
3.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )
A.35.578×103 B.3.5578×104
C.3.5578×105 D.0.35578×105
4.化简的结果是( )
A.1 B. C. D.
5.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )
A.50° B.55° C.60° D.65°
6.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
A.k>- B.k>-且 C.k<- D.k-且
7.计算﹣的结果为( )
A. B. C. D.
8.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是( )
A. B.
C. D.
9.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
10.下列各式计算正确的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)
12.若有意义,则x的范围是_____.
13.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
14.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
15.如果分式的值是0,那么x的值是______.
16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.
17.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.
三、解答题(共7小题,满分69分)
18.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
19.(5分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.
20.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.
21.(10分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
22.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
23.(12分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b= ,m= ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
24.(14分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
(1)求 x 的范围;
(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
2、D
【解析】
根据特殊角三角函数值,可得答案.
【详解】
解:tan45°=1,
故选D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3、B
【解析】
科学计数法是a×,且,n为原数的整数位数减一.
【详解】
解:35578= 3.5578×,
故选B.
【点睛】
本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
4、A
【解析】
原式=•(x–1)2+=+==1,故选A.
5、D
【解析】
试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
考点:圆的基本性质
6、B
【解析】
在与一元二次方程有关的求值问题中,必须满足下列条件:
(1)二次项系数不为零;
(2)在有两个实数根下必须满足△=b2-4ac≥1.
【详解】
由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
因此可求得k>且k≠1.
故选B.
【点睛】
本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
7、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
8、B
【解析】
首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
【详解】
设学校购买文学类图书平均每本书的价格是x元,可得:
故选B.
【点睛】
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
9、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
10、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、②③④
【解析】
①可用特殊值法证明,当为的中点时,,可见.
②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
③先证明,得到,再根据,得到,代换可得.
④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
【详解】
解:
①错误.当为的中点时,,可见;
②正确.
如图,连接,交于点,
,
,,,
四边形为矩形,
,
,
,
,
,
,
.
③正确.
,
,
,
,
,
又,
,
,
,
,
.
④正确.
且四边形为矩形,
,
当时,取最小值,
此时,
故的最小值为.
故答案为:②③④.
【点睛】
本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
12、x≤1.
【解析】
根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.
【详解】
依题意得:1﹣x≥0且x﹣3≠0,
解得:x≤1.
故答案是:x≤1.
【点睛】
本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.
13、4.8或
【解析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以=,
即=,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以=,
即=,
解得t=.
综上所述,当t=4.8或时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
14、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
15、1.
【解析】
根据分式为1的条件得到方程,解方程得到答案.
【详解】
由题意得,x=1,故答案是:1.
【点睛】
本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
16、
【解析】
分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.
详解:延长AE交DF于G,如图, ∵AB=5,AE=3,BE=4,
∴△ABE是直角三角形,
同理可得△DFC是直角三角形,可得△AGD是直角三角形,
∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,
同理可得:∠ADG=∠BAE.
在△AGD和△BAE中,∵,
∴△AGD≌△BAE(ASA),
∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,
同理可得:GF=1,∴EF=.
故答案为.
点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.
17、1
【解析】
由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
【详解】
解:第1行1个数,第2行2个数,第3行3个数,…,
∴第9行9个数,
∴第10行第8个数为第1+2+3+…+9+8=1个数.
又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
∴第10行第8个数应该是1.
故答案为:1.
【点睛】
本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】
解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定.
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.
(2)根据平均数和中位数的统计意义分析得出即可.
(3)分别求出初中、高中部的方差比较即可.
19、见解析
【解析】
根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.
【详解】
如图为画出的菱形:
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.
20、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
21、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
22、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
23、50;28;8
【解析】
【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
【详解】解:(1)50,28,8;
(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
即扇形统计图中扇形C的圆心角度数为144°;
(3)1000×=560(人).
即每月零花钱的数额x元在60≤x<120范围的人数为560人.
【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.
24、(1)0<x≤200,且 x是整数(2)175
【解析】
(1)根据商场的规定确定出x的范围即可;
(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
【详解】
(1)根据题意得:0<x≤200,且x为整数;
(2)设小王原计划购买x个纪念品,
根据题意得:,
整理得:5x+175=6x,
解得:x=175,
经检验x=175是分式方程的解,且满足题意,
则小王原计划购买175个纪念品.
【点睛】
此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
新疆生产建设兵团市级名校2021-2022学年中考五模数学试题含解析: 这是一份新疆生产建设兵团市级名校2021-2022学年中考五模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,如图,在平面直角坐标系中,以A,已知,,且,则的值为等内容,欢迎下载使用。
新疆沙湾县2021-2022学年中考适应性考试数学试题含解析: 这是一份新疆沙湾县2021-2022学年中考适应性考试数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022学年新疆沙湾县重点名校中考冲刺卷数学试题含解析: 这是一份2021-2022学年新疆沙湾县重点名校中考冲刺卷数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,估算的值在等内容,欢迎下载使用。

