![2022届【全国百强校首发】福建省厦门外国语校中考二模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13063779/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届【全国百强校首发】福建省厦门外国语校中考二模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13063779/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022届【全国百强校首发】福建省厦门外国语校中考二模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13063779/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022届【全国百强校首发】福建省厦门外国语校中考二模数学试题含解析
展开1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是
A.5B.6C.7D.8
2.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈B.四丈五尺C.一丈D.五尺
3.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )
A.(﹣3,﹣4)或(3,4)B.(﹣4,﹣3)
C.(﹣4,﹣3)或(4,3)D.(﹣3,﹣4)
4.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A.B.C.πD.
5.的倒数是( )
A.﹣B.2C.﹣2D.
6.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是( )
A.B.C.D.
7.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100°B.80°C.50°D.20°
8.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )
A.75°B.60°C.45°D.30°
9.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是( )
A.B.
C.D.
10.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.B.C.D.
11.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5
12.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
A.6个B.7个C.8个D.9个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.请写出一个比2大且比4小的无理数:________.
14.8的算术平方根是_____.
15.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
16.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______.
17.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.
18.二次函数y=x2-2x+1的对称轴方程是x=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
20.(6分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
21.(6分)(11分)阅读资料:
如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 .
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切点;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.
22.(8分)先化简,再求值:,其中m是方程的根.
23.(8分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
24.(10分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
25.(10分)先化简,后求值:(1﹣)÷(),其中a=1.
26.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
27.(12分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.
【详解】
解:∵半径OC垂直于弦AB,
∴AD=DB= AB=
在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,
解得,OA=4
∴OD=OC-CD=3,
∵AO=OE,AD=DB,
∴BE=2OD=6
故选B
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键
2、B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
3、A
【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.
【详解】
解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),
故选A.
【点睛】
本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
4、A
【解析】
试题分析:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=,∠A=30°,
∴OB=,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧长为.
故选A.
考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
5、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
6、B
【解析】
根据图示知,反比例函数的图象位于第一、三象限,
∴k>0,
∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,
∴一次函数y=kx−k的图象经过第一、三、四象限;
故选:B.
7、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
8、C
【解析】
根据直角三角形两锐角互余即可解决问题.
【详解】
解:∵直角三角形两锐角互余,
∴另一个锐角的度数=90°﹣45°=45°,
故选C.
【点睛】
本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
9、B
【解析】
根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可.
【详解】
设乙每天完成x个零件,则甲每天完成(x+8)个.
即得, ,故选B.
【点睛】
找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.
10、C
【解析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD,
在Rt△OCD中,OC=OD=2,
∴∠ODC=30°,CD=
∴∠COD=60°,
∴阴影部分的面积= ,
故选:C.
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
11、B
【解析】
试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
12、A
【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【详解】
如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的C点有2个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点睛】
本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(或)
【解析】
利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
【详解】
设无理数为,,所以x的取值在4~16之间都可,故可填
【点睛】
本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
14、2.
【解析】
试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.
由算术平方根的定义可知:8的算术平方根是,
∵=2,
∴8的算术平方根是2.
故答案为2.
考点:算术平方根.
15、 .
【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
【详解】
解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
∵AC=6,CF=1,
∴AF=AC-CF=4,
∵∠A=60°,∠AMF=90°,
∴∠AFM=30°,
∴AM=AF=1,
∴FM==1 ,
∵FP=FC=1,
∴PM=MF-PF=1-1,
∴点P到边AB距离的最小值是1-1.
故答案为: 1-1.
【点睛】
本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
16、
【解析】
分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.
解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:
故答案为
点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
17、SSS.
【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
【详解】
由图可知,CM=CN,又OM=ON,
∵在△MCO和△NCO中
,
∴△COM≌△CON(SSS),
∴∠AOC=∠BOC,
即OC是∠AOB的平分线.
故答案为:SSS.
【点睛】
本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
18、1
【解析】
利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
【详解】
∵-=-=1,
∴x=1.
故答案为:1
【点睛】
本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
【点睛】
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
20、这栋楼的高度BC是米.
【解析】
试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
试题解析:
解:∵°,°,°,AD=100,
∴在Rt中,,
在Rt中,.
∴.
点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.
21、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.
【解析】
试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.
试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,
∵P(a,b),半径为r,
∴AP1=(x﹣a)1+(y﹣b)1=r1.
故答案为(x﹣a)1+(y﹣b)1=r1;
综合应用:
①∵PO=PA,PD⊥OA,
∴∠OPD=∠APD.
在△POB和△PAB中,
,
∴△POB≌△PAB,
∴∠POB=∠PAB.
∵⊙P与x轴相切于原点O,
∴∠POB=90°,
∴∠PAB=90°,
∴AB是⊙P的切线;
②存在到四点O,P,A,B距离都相等的点Q.
当点Q在线段BP中点时,
∵∠POB=∠PAB=90°,
∴QO=QP=BQ=AQ.
此时点Q到四点O,P,A,B距离都相等.
∵∠POB=90°,OA⊥PB,
∴∠OBP=90°﹣∠DOB=∠POA,
∴tan∠OBP==tan∠POA=.
∵P点坐标为(0,6),
∴OP=6,OB=OP=3.
过点Q作QH⊥OB于H,如图3,
则有∠QHB=∠POB=90°,
∴QH∥PO,
∴△BHQ∽△BOP,
∴===,
∴QH=OP=3,BH=OB=4,
∴OH=3﹣4=4,
∴点Q的坐标为(4,3),
∴OQ==5,
∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.
考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.
22、原式=.
∵m是方程的根.∴,即,∴原式=.
【解析】
试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
试题解析:原式=.
∵m是方程的根.∴,即,∴原式=.
考点:分式的化简求值;一元二次方程的解.
23、.
【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
【详解】
,
=
=
=
=,
当x=0时,原式=.
24、2.
【解析】
将原式化简整理,整体代入即可解题.
【详解】
解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
=x1﹣1x+1+x1﹣4x+x1﹣4
=3x1﹣2x﹣3,
∵x1﹣1x﹣1=1
∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
【点睛】
本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
25、,2.
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
解:原式=
,
当a=1时,
原式==2.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
26、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
27、(1)详见解析;(2)详见解析.
【解析】
(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
【详解】
解:(1)如图,及为所求.
(2)连接.
∵是的切线,
∴,
∴,
即,
∵是直径,
∴,
∴,
∵,
∴,
∴,
又
∴∽
∴
∴.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析: 这是一份2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析,共22页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。
2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析: 这是一份2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析,共17页。试卷主要包含了已知下列命题,单项式2a3b的次数是等内容,欢迎下载使用。
2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析: 这是一份2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的绝对值是等内容,欢迎下载使用。