|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析01
    2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析02
    2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析

    展开
    这是一份2021-2022学年云南省祥云县重点名校中考数学适应性模拟试题含解析,共24页。试卷主要包含了下列四个命题,正确的有个等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )
    A. B. C. D.
    2.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为(  )
    A.0.88×105 B.8.8×104 C.8.8×105 D.8.8×106
    3.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
    A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
    4.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是(  )

    A.小亮骑自行车的平均速度是12 km/h
    B.妈妈比小亮提前0.5 h到达姥姥家
    C.妈妈在距家12 km处追上小亮
    D.9:30妈妈追上小亮
    5.下列美丽的图案中,不是轴对称图形的是(   )
    A. B. C. D.
    6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    7.下列四个命题,正确的有(  )个.
    ①有理数与无理数之和是有理数
    ②有理数与无理数之和是无理数
    ③无理数与无理数之和是无理数
    ④无理数与无理数之积是无理数.
    A.1 B.2 C.3 D.4
    8.已知3a﹣2b=1,则代数式5﹣6a+4b的值是(  )
    A.4 B.3 C.﹣1 D.﹣3
    9.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    10.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    11.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为(  )

    A.70° B.65° C.62° D.60°
    12.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.

    14.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
    班级
    平均分
    中位数
    方差
    甲班



    乙班



    数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
    这次数学测试成绩中,甲、乙两个班的平均水平相同;
    甲班学生中数学成绩95分及以上的人数少;
    乙班学生的数学成绩比较整齐,分化较小.
    上述评估中,正确的是______填序号
    15.一个扇形的面积是πcm,半径是3cm,则此扇形的弧长是_____.
    16.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.

    17.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.
    18.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    20.(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)

    21.(6分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8
    22.(8分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
    (1)求A、B型商品的进价;
    (2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
    (3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
    23.(8分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
    (1)求一次函数的解析式;
    (2)求的面积。

    24.(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.
    (1)求k和b的值;
    (2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;
    (3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

    25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    26.(12分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.

    (1)指出条形统计图中存在的错误,并求出正确值;
    (2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?
    (3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?
    27.(12分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】210万=2100000,
    2100000=2.1×106,
    故选B.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、B
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,
    ∵88000一共5位,∴88000=8.88×104. 故选B.
    考点:科学记数法.
    3、A
    【解析】
    因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
    4、D
    【解析】
    根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
    【详解】
    解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
    ∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
    B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
    ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
    C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
    ∴小亮走的路程为:1×12=12km,
    ∴妈妈在距家12km出追上小亮,故正确;
    D、由图象可知,当t=9时,妈妈追上小亮,故错误;
    故选D.
    【点睛】
    本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
    5、A
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    6、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    7、A
    【解析】
    解:①有理数与无理数的和一定是有理数,故本小题错误;
    ②有理数与无理数的和一定是无理数,故本小题正确;
    ③例如=0,0是有理数,故本小题错误;
    ④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.
    故选A.
    点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.
    8、B
    【解析】
    先变形,再整体代入,即可求出答案.
    【详解】
    ∵3a﹣2b=1,
    ∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
    故选:B.
    【点睛】
    本题考查了求代数式的值,能够整体代入是解此题的关键.
    9、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    10、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    11、A
    【解析】
    由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
    【详解】
    ∵AB∥CD,∠C=35°,
    ∴∠ABC=∠C=35°,
    ∵BC平分∠ABE,
    ∴∠ABE=2∠ABC=70°,
    ∵AB∥CD,
    ∴∠BED=∠ABE=70°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
    12、B
    【解析】
    无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
    【详解】
    ∵这组数中无理数有,共2个,
    ∴卡片上的数为无理数的概率是 .
    故选B.
    【点睛】
    本题考查了无理数的定义及概率的计算.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BC∥AD、BC=AD,
    而CE=2EB,
    ∴△AFD∽△CFE,且它们的相似比为3:2,
    ∴S△AFD:S△EFC=()2,
    而S△AFD=9,
    ∴S△EFC=1.
    故答案为1.
    【点睛】
    此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.
    14、
    【解析】
    根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
    【详解】
    解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
    ∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
    故正确;
    ∵甲班的中位数是95.5分,乙班的中位数是90.5分,
    甲班学生中数学成绩95分及以上的人数多,
    故错误;
    ∵甲班的方差是41.25分,乙班的方差是36.06分,
    甲班的方差大于乙班的方差,
    乙班学生的数学成绩比较整齐,分化较小;
    故正确;
    上述评估中,正确的是;
    故答案为:.
    【点睛】
    本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
    15、
    【解析】
    根据扇形面积公式求解即可
    【详解】
    根据扇形面积公式.
    可得:,

    故答案:.
    【点睛】
    本题主要考查了扇形的面积和弧长之间的关系, 利用扇形弧长和半径代入公式即可求解, 正确理解公式是解题的关键. 注意在求扇形面积时, 要根据条件选择扇形面积公式.
    16、
    【解析】
    试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.

    可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成.
    其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.
    ∵BC与AB延长线的夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心位置,
    ∴此时⊙O1与AB和BC都相切.
    则∠O1BE=∠O1BF=60度.
    此时Rt△O1BE和Rt△O1BF全等,
    在Rt△O1BE中,BE=cm.
    ∴OO1=AB-BE=(60-)cm.
    ∵BF=BE=cm,
    ∴O1O2=BC-BF=(40-)cm.
    ∵AB∥CD,BC与水平夹角为60°,
    ∴∠BCD=120度.
    又∵∠O2CB=∠O3CD=90°,
    ∴∠O2CO3=60度.
    则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧.
    ∴的长=×2π×10=πcm.
    ∵四边形O3O4DC是矩形,
    ∴O3O4=CD=40cm.
    综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是:
    (60-)+(40-)+π+40=(140-+π)cm.
    17、.
    【解析】
    先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.
    【详解】
    解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
    ∴AB==1.
    ∵CD⊥AB,
    ∴CD=.
    ∵AD•BD=CD2,
    设AD=x,BD=1-x.
    解得x=,
    ∴点A在圆外,点B在圆内,
    r的范围是,
    故答案为.
    【点睛】
    本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.
    18、1
    【解析】
    由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
    【详解】
    解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
    ∵AB∥CD,
    ∴∠1+∠3=180°,
    ∴∠1=180°﹣70°=1°,
    故答案为1.


    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    20、52
    【解析】
    根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.
    【详解】

    如图,过点C作CF⊥AB于点F.
    设塔高AE=x,
    由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,
    在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,
    则,
    在Rt△ABD中,∠ADB=45°,AB=x+56,
    则BD=AB=x+56,
    ∵CF=BD,
    ∴,
    解得:x=52,
    答:该铁塔的高AE为52米.
    【点睛】
    本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.
    21、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
    22、(1)80,100;(2)100件,22000元;(3)答案见解析.
    【解析】
    (1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
    (2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
    (3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
    【详解】
    解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,

    解得,a=80,
    经检验,a=80是原分式方程的解,
    ∴a+20=100,
    答:A、B型商品的进价分别为80元/件、100元/件;
    (2)设购机A型商品x件,
    80x+100(200﹣x)≤18000,
    解得,x≥100,
    设获得的利润为w元,
    w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
    ∴当x=100时,w取得最大值,此时w=22000,
    答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
    (3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
    ∵50<a<70,
    ∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
    当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
    当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
    【点睛】
    本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.
    23、(1);(2)6.
    【解析】
    (1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;
    (2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.
    【详解】
    (1)当x=2时,=4,
    当y=-2时,-2=,x=-4,
    所以点A(2,4),点B(-4,-2),
    将A,B两点分别代入一次函数解析式,得

    解得:,
    所以,一次函数解析式为;
    (2)令直线AB与y轴交点为D,则OD=b=2,
    .
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.
    24、 (1)k=-,b=1;(1) (0,1)和
    【解析】
    分析:(1) 由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.
    详解:(1) 由直线经过点,可得.
    由抛物线的对称轴是直线,可得.
    ∵直线与x轴、y轴分别相交于点、,
    ∴点的坐标是,点的坐标是.
    ∵抛物线的顶点是点,∴点的坐标是.
    ∵点是轴上一点,∴设点的坐标是.
    ∵△BCG与△BCD相似,又由题意知,,
    ∴△BCG与△相似有两种可能情况:
    ①如果,那么,解得,∴点的坐标是.
    ②如果,那么,解得,∴点的坐标是.
    综上所述:符合要求的点有两个,其坐标分别是和 .
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴ ,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.
    当a=-1时,=;
    当a=1时,=;
    ∴点的坐标是或.

    点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.
    25、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    26、(1)见解析;(2)140人;(1).
    【解析】
    (1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;
    (2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;
    (1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.
    【详解】
    (1)由统计图可得:

    (1分)
    (2分)

    (4分)
    (5分)
    甲(人)
    0
    1
    7
    6
    4
    乙(人)
    2
    2
    5
    8
    4
    全体(%)
    5
    12.5
    10
    15
    17.5
    乙组得分的人数统计有误,
    理由:由条形统计图和扇形统计图的对应可得,
    2÷5%=40,(1+2)÷12.5%=40,
    (7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,
    故乙组得5分的人数统计有误,
    正确人数应为:40×17.5%﹣4=1.
    (2)800×(5%+12.5%)=140(人);
    (1)如图得:

    ∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,
    ∴所选两人正好分在一组的概率是:.
    【点睛】
    本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.
    27、 (1) ;(2) 当m=2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)
    【解析】
    (1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;
    (2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:y=−x+2,设点M(m,−m+2),Q(m,m2−m−2),可得MQ=−m2+m+4,根据平行四边形的性质可得QM=CD=4,即−m2+m+4=4可解得m=2;
    (3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).
    【详解】
    (1)由题意知,
    ∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,
    ∴解得:
    ∴所求抛物线的解析式为
    (2)由(1)知抛物线的解析式为,令x=0,得y=﹣2
    ∴点C的坐标为C(0,﹣2)
    ∵点D与点C关于x轴对称
    ∴点D的坐标为D(0,2)
    设直线BD的解析式为:y=kx+2且B(4,0)
    ∴0=4k+2,解得:
    ∴直线BD的解析式为:
    ∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q
    ∴可设点M,Q
    ∴MQ=
    ∵四边形CQMD是平行四边形
    ∴QM=CD=4,即=4
    解得:m1=2,m2=0(舍去)
    ∴当m=2时,四边形CQMD为平行四边形
    (3)由题意,可设点Q且B(4,0)、D(0,2)
    ∴BQ2=
    DQ2=
    BD2=20
    ①当∠BDQ=90°时,则BD2+DQ2=BQ2,

    解得:m1=8,m2=﹣1,此时Q1(8,18),Q2(﹣1,0)
    ②当∠DBQ=90°时,则BD2+BQ2=DQ2,

    解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)
    ∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).
    【点睛】
    此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.

    相关试卷

    云南省临沧市凤庆县重点名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份云南省临沧市凤庆县重点名校2021-2022学年中考数学适应性模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    云南省大理州祥云县重点达标名校2021-2022学年中考数学全真模拟试卷含解析: 这是一份云南省大理州祥云县重点达标名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了下列计算中,错误的是,已知∠BAC=45,的倒数是等内容,欢迎下载使用。

    2022年云南省丽江市重点名校中考数学适应性模拟试题含解析: 这是一份2022年云南省丽江市重点名校中考数学适应性模拟试题含解析,共22页。试卷主要包含了下列四个实数中是无理数的是,若点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map