|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析01
    2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析02
    2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析

    展开
    这是一份2021-2022学年浙江省玉环市第一期重点名校中考考前最后一卷数学试卷含解析,共28页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:
    ①小明家距学校4千米;
    ②小明上学所用的时间为12分钟;
    ③小明上坡的速度是0.5千米/分钟;
    ④小明放学回家所用时间为15分钟.
    其中正确的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    2.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )

    A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
    C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]
    3.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )

    A.30° B.45° C.50° D.75°
    4.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是(  )

    A.2 B.3 C.4 D.5
    5.函数在同一直角坐标系内的图象大致是(  )
    A. B. C. D.
    6.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
    A. B. C.且 D.
    7.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为(  )

    A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
    8.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为(  )

    A. B. C. D.
    9.不解方程,判别方程2x2﹣3x=3的根的情况(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.有一个实数根 D.无实数根
    10.下列计算正确的是(  )
    A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
    C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
    11.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为(  )

    A.8 B.6 C.12 D.10
    12.下列汽车标志中,不是轴对称图形的是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.

    14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_____km.
    15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
    16.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    17.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.
    18.在数轴上与表示的点距离最近的整数点所表示的数为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.

    20.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
    组别

    成绩(分)

    频数(人数)

    频率





    2

    0.04





    10

    0.2





    14

    b





    a

    0.32





    8

    0.16

    请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
    若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
    21.(6分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.

    (1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是  ;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为  ;
    (2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,
    ①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;
    ②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
    22.(8分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.

    23.(8分)解不等式组: ,并写出它的所有整数解.
    24.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

    (1)求二次函数的表达式;
    (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
    (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
    25.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
    (1)求抛物线的解析式;
    (2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
    (3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

    26.(12分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
    (1)求两种机器人每台每小时各分拣多少件包裹;
    (2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

    27.(12分)计算:2tan45°-(-)º-



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.
    【详解】
    解:①小明家距学校4千米,正确;
    ②小明上学所用的时间为12分钟,正确;
    ③小明上坡的速度是千米/分钟,错误;
    ④小明放学回家所用时间为3+2+10=15分钟,正确;
    故选:C.
    【点睛】
    本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
    2、D
    【解析】
    试题分析:
    解:由图形可得出:甲所用铁丝的长度为:2a+2b,
    乙所用铁丝的长度为:2a+2b,
    丙所用铁丝的长度为:2a+2b,
    故三种方案所用铁丝一样长.
    故选D.
    考点:生活中的平移现象
    3、B
    【解析】
    试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.
    4、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    【点睛】
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    5、C
    【解析】
    根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
    【详解】
    当a>0时,二次函数的图象开口向上,
    一次函数的图象经过一、三或一、二、三或一、三、四象限,
    故A、D不正确;
    由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,
    但B中,一次函数a>0,b>0,排除B.
    故选C.
    6、C
    【解析】
    根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
    【详解】
    解:∵关于x的一元二次方程有两个不相等的实数根,
    ∴ ,
    解得:k<1且k≠1.
    故选:C.
    【点睛】
    本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
    7、C
    【解析】
    根据题目数据求出函数解析式,根据二次函数的性质可得.
    【详解】
    根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
    得:
    解得:a=−0.2,b=1.5,c=−2,
    即p=−0.2t2+1.5t−2,
    当t=−=3.75时,p取得最大值,
    故选C.
    【点睛】
    本题考查了二次函数的应用,熟练掌握性质是解题的关键.
    8、B
    【解析】
    连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
    【详解】
    解:连接OE,如图所示:

    ∵四边形ABCD是菱形,
    ∴∠D=∠B=60°,AD=AB=4,
    ∴OA=OD=2,
    ∵OD=OE,
    ∴∠OED=∠D=60°,
    ∴∠DOE=180°﹣2×60°=60°,
    ∴ 的长==;
    故选B.
    【点睛】
    本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
    9、B
    【解析】
    一元二次方程的根的情况与根的判别式有关,
    ,方程有两个不相等的实数根,故选B
    10、D
    【解析】
    A、原式=a2﹣4,不符合题意;
    B、原式=a2﹣a﹣2,不符合题意;
    C、原式=a2+b2+2ab,不符合题意;
    D、原式=a2﹣2ab+b2,符合题意,
    故选D
    11、C
    【解析】
    由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
    【详解】
    ∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
    ∴PA=PB=6,AC=EC,BD=ED,
    ∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
    即△PCD的周长为12,
    故选:C.
    【点睛】
    本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
    12、C
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、是轴对称图形,故错误;
    B、是轴对称图形,故错误;
    C、不是轴对称图形,故正确;
    D、是轴对称图形,故错误.
    故选C.
    【点睛】
    本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、80°.
    【解析】
    如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
    【详解】
    如图,

    ∵m∥n,
    ∴∠1=∠3,
    ∵∠1=100°,
    ∴∠3=100°,
    ∴∠2=180°﹣100°=80°,
    故答案为80°.
    【点睛】
    本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
    14、1.
    【解析】
    根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.
    【详解】
    解:设A港与B港相距xkm,
    根据题意得:

    解得:x=1,
    则A港与B港相距1km.
    故答案为:1.
    【点睛】
    此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.
    15、
    【解析】
    判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.
    【详解】
    解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,
    故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.
    故答案为.
    【点睛】
    考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.
    16、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    17、圆形
    【解析】
    根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.
    【详解】
    围成的圆形场地的面积较大.理由如下:
    设正方形的边长为a,圆的半径为R,
    ∵竹篱笆的长度为48米,
    ∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,
    ∴R=,即所围成的圆的半径为,
    ∴正方形的面积S1=a2=144,圆的面积S2=π×()2=,
    ∵144<,
    ∴围成的圆形场地的面积较大.
    故答案为:圆形.
    【点睛】
    此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.
    18、3
    【解析】
    ≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,
    且0.683>0.317,∴距离整数点3最近.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.
    20、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
    【解析】
    试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
    试题解析:(1)2÷0.04=50
    (2)50×0.32=16 14÷50=0.28
    (3)
    (4)(0.32+0.16)×100%=48%
    考点:频数分布直方图
    21、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.
    【解析】
    (1)∵点A的坐标为(−2,1),
    ∴2+1=4,
    点R(0,4),S(2,2),T(2,−2)中,
    0+4=4,2+2=4,2+2=5,
    ∴点A的同族点的是R,S;
    故答案为R,S;
    ②∵点B在x轴上,
    ∴点B的纵坐标为0,
    设B(x,0),
    则|x|=4,
    ∴x=±4,
    ∴B(−4,0)或(4,0);
    故答案为(−4,0)或(4,0);
    (2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).

    点M在线段CD上,设其坐标为(x,y),则有:
    ,,且.
    点M到x轴的距离为,点M到y轴的距离为,
    则.
    ∴点M的同族点N满足横纵坐标的绝对值之和为2.
    即点N在右图中所示的正方形CDEF上.
    ∵点E的坐标为(,0),点N在直线上,
    ∴.
    ②如图,设P(m,0)为圆心, 为半径的圆与直线y=x−2相切,

    ∴PC=2,
    ∴OP=1,
    观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,
    ∴满足条件的m的范围:m≤或m≥1

    22、135°
    【解析】
    先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
    ∵AD=DE=CE,
    ∴AD=DE=CE=BC,
    ∴∠DAE=∠AED,∠CBE=∠CEB,
    ∵∠DEC=90°,
    ∴∠EDC=∠ECD=45°,
    设∠DAE=∠AED=x,∠CBE=∠CEB=y,
    ∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
    ∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
    ,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
    ∴2x﹣45°=225°﹣2y,
    ∴x+y=135°,
    ∴∠AEB=360°﹣135°﹣90°=135°.
    【点睛】
    本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
    23、﹣2,﹣1,0,1,2;
    【解析】
    首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
    【详解】
    解:解不等式(1),得
    解不等式(2),得x≤2
    所以不等式组的解集:-3<x≤2
    它的整数解为:-2,-1,0,1,2
    24、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【解析】
    (1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
    (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
    (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【详解】
    解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

    解得:b=﹣4,c=3,
    ∴二次函数的表达式为:y=x2﹣4x+3;
    (2)令y=0,则x2﹣4x+3=0,
    解得:x=1或x=3,
    ∴B(3,0),
    ∴BC=3,
    点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
    ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
    ∴P1(0,3+3),P2(0,3﹣3);
    ②当PB=PC时,OP=OB=3,
    ∴P3(0,-3);
    ③当BP=BC时,
    ∵OC=OB=3
    ∴此时P与O重合,
    ∴P4(0,0);
    综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

    (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
    ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
    当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

    25、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
    【解析】
    (1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
    根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
    (2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
    (3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    通过证明△BNP≌△PMQ求解即可.
    【详解】
    (1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
    设原抛物线的顶点为D,
    ∵点B(3,0),点C(0,3).
    易得BC的解析式为:y=﹣x+3,
    当x=1时,y=2,
    如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
    h=3﹣1=2,
    当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
    h=3+1=4,
    ∴h的取值范围是2≤h≤4;
    (3)设P(m,﹣m2+2m+3),
    如图2,△PQB是等腰直角三角形,且PQ=PB,
    过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    易得△BNP≌△PMQ,
    ∴BN=PM,
    即﹣m2+2m+3=m+3,
    解得:m1=0(图3)或m2=1,
    ∴P(1,4)或(0,3).
    【点睛】
    本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
    26、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
    【解析】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
    (2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
    【详解】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
    由题意得,,
    解得,,
    答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
    (2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
    由题意得,30a+40(200﹣a)≥7000,
    解得:a≤100,则最多应购进A种机器人100台.
    【点睛】
    本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
    27、2-
    【解析】
    先求三角函数,再根据实数混合运算法计算.
    【详解】
    解:原式=2×1-1-=1+1-=2-
    【点睛】
    此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.

    相关试卷

    浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么的值为等内容,欢迎下载使用。

    2021-2022学年江苏省无锡市崇安区重点名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年江苏省无锡市崇安区重点名校中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了八边形的内角和为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map