|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析01
    2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析02
    2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2021-2022学年山东省菏泽市郓城县重点名校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在中,,,,则等于( )

    A. B. C. D.
    2.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是(  )

    A.2011﹣2014年最高温度呈上升趋势
    B.2014年出现了这6年的最高温度
    C.2011﹣2015年的温差成下降趋势
    D.2016年的温差最大
    3.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是(  )

    A.(2017,0) B.(2017,)
    C.(2018,) D.(2018,0)
    4.在实数,,,中,其中最小的实数是(  )
    A. B. C. D.
    5.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是(   )

    A.1 B.2 C.3 D.4
    6.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为(  )

    A. B. C. D.
    7.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    8.下表是某校合唱团成员的年龄分布.
    年龄/岁
    13
    14
    15
    16
    频数
    5
    15
    x

    对于不同的x,下列关于年龄的统计量不会发生改变的是( )
    A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
    9.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    10.一个多边形的每一个外角都等于72°,这个多边形是( )
    A.正三角形 B.正方形 C.正五边形 D.正六边形
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若式子有意义,则x的取值范围是_____.
    12.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
    13.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
    (1)OM的长等于_______;
    (2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

    14.如图1,点P从扇形AOB的O点出发,沿O→A→B→0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为______cm.

    15.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    16.若正六边形的内切圆半径为2,则其外接圆半径为__________.
    三、解答题(共8题,共72分)
    17.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
    (1)求每千克A级别茶叶和B级别茶叶的销售利润;
    (2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
    18.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    19.(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
    如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
    20.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.
    已知:如图,线段a,h.
    求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.

    21.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
    22.(10分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).
    ()求点、点的坐标;
    ()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.
    ①求证:点是这个新抛物线与直线的唯一交点;
    ②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.

    23.(12分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
    若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.

    24.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
    (1)求证:四边形ADEF是平行四边形;
    (2)若∠ABC=60°,BD=6,求DE的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
    详解:在Rt△ABC中,∵AB=10、AC=8,
    ∴BC=,
    ∴sinA=.
    故选:A.
    点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
    2、C
    【解析】
    利用折线统计图结合相应数据,分别分析得出符合题意的答案.
    【详解】
    A选项:年最高温度呈上升趋势,正确;
    B选项:2014年出现了这6年的最高温度,正确;
    C选项:年的温差成下降趋势,错误;
    D选项:2016年的温差最大,正确;
    故选C.
    【点睛】
    考查了折线统计图,利用折线统计图获取正确信息是解题关键.
    3、C
    【解析】
    本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
    【详解】
    .解:∵正六边形ABCDEF一共有6条边,即6次一循环;
    ∴2017÷6=336余1,
    ∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
    ∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
    ∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
    ∴点F滚动2107次时的坐标为(2018,),
    故选C.
    【点睛】
    本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.
    4、B
    【解析】
    由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
    【详解】
    解:∵0,-2,1,中,-2<0<1<,
    ∴其中最小的实数为-2;
    故选:B.
    【点睛】
    本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.
    5、C
    【解析】
    ∵四边形ABCD是正方形,
    ∴AD=BC,∠DAB=∠ABC=90°,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中, ,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,
    ∵∠Q+∠QAB=90°,
    ∴∠P+∠QAB=90°,
    ∴∠AOP=90°,
    ∴AQ⊥DP;
    故①正确;
    ∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
    ∴∠DAO=∠P,
    ∴△DAO∽△APO,
    ∴ ,
    ∴AO2=OD•OP,
    ∵AE>AB,
    ∴AE>AD,
    ∴OD≠OE,
    ∴OA2≠OE•OP;故②错误;
    在△CQF与△BPE中 ,
    ∴△CQF≌△BPE,
    ∴CF=BE,
    ∴DF=CE,
    在△ADF与△DCE中, ,
    ∴△ADF≌△DCE,
    ∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
    即S△AOD=S四边形OECF;故③正确;
    ∵BP=1,AB=3,
    ∴AP=4,
    ∵△AOP∽△DAP,
    ∴ ,
    ∴BE=,∴QE=,
    ∵△QOE∽△PAD,
    ∴ ,
    ∴QO=,OE=,
    ∴AO=5﹣QO=,
    ∴tan∠OAE==,故④正确,
    故选C.
    点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
    6、A
    【解析】
    根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
    【详解】
    如图所示,

    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
    ∴DE2+CE2=CD2,DE=CE,
    ∴2S2=S1.
    观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
    ∴Sn=()n﹣2.
    当n=2018时,S2018=()2018﹣2=()3.
    故选A.
    【点睛】
    本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
    7、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    8、A
    【解析】
    由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
    【详解】
    由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
    9、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    10、C
    【解析】
    任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
    【详解】
    360°÷72°=1,则多边形的边数是1.
    故选C.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x≥﹣2且x≠1.
    【解析】
    由知,
    ∴,
    又∵在分母上,
    ∴.故答案为且.
    12、
    【解析】
    当k−1=0,即k=1时,原方程为−4x−5=0,
    解得:x=−,
    ∴k=1符合题意;
    当k−1≠0,即k≠1时,有,
    解得:k⩾且k≠1.
    综上可得:k的取值范围为k⩾.
    故答案为k⩾.
    13、(1)4;(2)见解析;
    【解析】
    解:(1)由勾股定理可得OM的长度
    (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
    【详解】
    (1)OM==4;
    故答案为4.
    (2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
    ∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
    ∴PA2+PB2=4(a﹣)2+,
    ∵0≤a≤4,
    ∴当a=时,PA2+PB2 取得最小值,
    综上,需作出点P满足线段OP的长=;
    取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
    则点P即为所求.
    【点睛】(1) 根据勾股定理即可得到结论;
    (2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
    14、
    【解析】
    由图2可以计算出OB的长度,然后利用OB=OA可以计算出通过弦AB的长度.
    【详解】
    由图2得通过OB所用的时间为s,则OB的长度为1×2=2cm,则通过弧AB的时间为s,则弧长AB为,利用弧长公式,得出∠AOB=120°,即可以算出AB为.
    【点睛】
    本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.
    15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
    16、
    【解析】
    根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
    【详解】

    解:如图,连接、,作于;
    则,
    ∵六边形正六边形,
    ∴是等边三角形,
    ∴,
    ∴,
    ∴正六边形的内切圆半径为2,则其外接圆半径为.
    故答案为.
    【点睛】
    本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.

    三、解答题(共8题,共72分)
    17、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    【解析】
    试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
    试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
    由题意,
    解得,
    答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
    由题意w=100a+150(200﹣a)=﹣50a+30000,
    ∵﹣50<0,
    ∴w随x的增大而减小,
    ∴当a取最小值,w有最大值,
    ∵200﹣a≤2a,
    ∴a≥,
    ∴当a=67时,w最小=﹣50×67+30000=26650(元),
    此时200﹣67=133kg,
    答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
    18、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    19、(1)、(2)证明见解析(3)28
    【解析】
    试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
    (2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
    (3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
    试题解析:(1)如图1,在正方形ABCD中,
    ∵BC=CD,∠B=∠CDF,BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)如图2,延长AD至F,使DF=BE,连接CF,

    由(1)知△CBE≌△CDF,
    ∴∠BCE=∠DCF.
    ∴∠BCE+∠ECD=∠DCF+∠ECD
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.

    AE=AB-BE=12-4=8,
    设DF=x,则AD=12-x,
    根据(2)可得:DE=BE+DF=4+x,
    在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
    解得:x=1.
    则DE=4+1=2.
    【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
    20、见解析
    【解析】
    作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.
    【详解】
    解:如图所示,△ABC即为所求.

    【点睛】
    考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.
    21、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
    【解析】
    (1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
    (2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
    (3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
    【详解】
    (1)y=300﹣10(x﹣44),
    即y=﹣10x+740(44≤x≤52);
    (2)根据题意得(x﹣40)(﹣10x+740)=2400,
    解得x1=50,x2=64(舍去),
    答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
    (3)w=(x﹣40)(﹣10x+740)
    =﹣10x2+1140x﹣29600
    =﹣10(x﹣57)2+2890,
    当x<57时,w随x的增大而增大,
    而44≤x≤52,
    所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
    答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
    【点睛】
    本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
    22、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.
    【解析】
    (1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;
    (2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;
    ②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 +t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.
    【详解】
    (1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);
    (2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;
    ②≤t≤6.
    【点睛】
    本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.
    23、详见解析.
    【解析】
    (1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;
    (1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.
    【详解】
    证明:∠1与∠1相等.
    在△ADC与△CBA中,

    ∴△ADC≌△CBA.(SSS)
    ∴∠DAC=∠BCA.
    ∴DA∥BC.
    ∴∠1=∠1.
    ②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.
    24、(1)证明见解析;(2).
    【解析】
    (1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;
    (2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.
    【详解】
    (1)证明:∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBE,
    ∵DE∥AB,
    ∴∠ABD=∠BDE,
    ∴∠DBE=∠BDE,
    ∴BE=DE;
    ∵BE=AF,
    ∴AF=DE;
    ∴四边形ADEF是平行四边形;
    (2)解:过点E作EH⊥BD于点H.
    ∵∠ABC=60°,BD是∠ABC的平分线,
    ∴∠ABD=∠EBD=30°,
    ∴DH=BD=×6=3,
    ∵BE=DE,
    ∴BH=DH=3,
    ∴BE==,
    ∴DE=BE=.

    【点睛】
    此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.

    相关试卷

    廊坊三中重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份廊坊三中重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,的整数部分是,下列各式计算正确的是,下列各数中,无理数是等内容,欢迎下载使用。

    2022年山东省菏泽市重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年山东省菏泽市重点名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,四组数中等内容,欢迎下载使用。

    2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程=1的解为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map