|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析01
    2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析02
    2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析

    展开
    这是一份2021-2022学年湖南省醴陵市重点名校中考数学押题卷含解析,共20页。试卷主要包含了下列各式正确的是,如图,若点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    2.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    3.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是(   )

    A. B.a C. D.
    4.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为(  )
    A.10 B.14 C.10或14 D.8或10
    5.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )

    A. B. C. D.
    6.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )

    A.x>1 B.x≥1 C.x>3 D.x≥3
    7.下列各式正确的是(  )
    A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018
    8.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )

    A.AC=AD﹣CD B.AC=AB+BC
    C.AC=BD﹣AB D.AC=AD﹣AB
    9.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是(  )
    A.
    B.
    C.
    D.
    10.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    11.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于(  )

    A.35° B.45° C.55° D.25°
    12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
    A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.比较大小: .(填“>”,“<”或“=”)
    14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是  .
    15.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.

    16.8的立方根为_______.
    17.函数y=+中,自变量x的取值范围是_____.
    18.因式分解: =
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
    (1)求甲、乙2名学生在不同书店购书的概率;
    (2)求甲、乙、丙3名学生在同一书店购书的概率.
    20.(6分)已知抛物线的开口向上顶点为P
    (1)若P点坐标为(4,一1),求抛物线的解析式;
    (2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
    (3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
    21.(6分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
    (1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
    (2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0 22.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)

    23.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?

    24.(10分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    25.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
    26.(12分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
    27.(12分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
    (1)求这个二次函数的解析式;
    (2)连接AC、BC,判断△ABC的形状,并证明;
    (3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
    【详解】
    a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
    故选C.
    【点睛】
    本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
    2、B
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,故错误;
    B、是中心对称图形,不是轴对称图形,故正确;
    C、是轴对称图形,也是中心对称图形,故错误;
    D、是轴对称图形,也是中心对称图形,故错误.
    故选B.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、A
    【解析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
    ∴MG=CG=×a=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    4、B
    【解析】
    试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
    ∴22﹣4m+3m=0,m=4,
    ∴x2﹣8x+12=0,
    解得x1=2,x2=1.
    ①当1是腰时,2是底边,此时周长=1+1+2=2;
    ②当1是底边时,2是腰,2+2<1,不能构成三角形.
    所以它的周长是2.
    考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
    5、D
    【解析】
    根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
    【详解】
    ∵二次函数图象开口方向向上,
    ∴a>0,
    ∵对称轴为直线
    ∴b<0,
    二次函数图形与轴有两个交点,则>0,
    ∵当x=1时y=a+b+c<0,
    ∴的图象经过第二四象限,且与y轴的正半轴相交,
    反比例函数图象在第二、四象限,
    只有D选项图象符合.
    故选:D.
    【点睛】
    考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
    6、C
    【解析】
    试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
    则该不等式组的解集是x>1.
    故选C.
    考点:在数轴上表示不等式的解集.
    7、A
    【解析】
    根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.
    【详解】
    选项A,﹣(﹣2018)=2018,故选项A正确;
    选项B,|﹣2018|=2018,故选项B错误;
    选项C,20180=1,故选项C错误;
    选项D,2018﹣1= ,故选项D错误.
    故选A.
    【点睛】
    本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.
    8、C
    【解析】
    根据线段上的等量关系逐一判断即可.
    【详解】
    A、∵AD-CD=AC,
    ∴此选项表示正确;
    B、∵AB+BC=AC,
    ∴此选项表示正确;
    C、∵AB=CD,
    ∴BD-AB=BD-CD,
    ∴此选项表示不正确;
    D、∵AB=CD,
    ∴AD-AB=AD-CD=AC,
    ∴此选项表示正确.
    故答案选:C.
    【点睛】
    本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.
    9、C
    【解析】
    首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
    故选C.
    点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
    10、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    11、A
    【解析】
    根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
    【详解】
    解:∵BC⊥AE,
    ∴∠BCE=90°,
    ∵CD∥AB,∠B=55°,
    ∴∠BCD=∠B=55°,
    ∴∠1=90°-55°=35°,
    故选:A.
    【点睛】
    本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    12、C
    【解析】
    科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
    【详解】
    解:由科学记数法可知:250000 m2=2.5×105m2,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、>
    【解析】
    试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.
    考点:二次根式的大小比较
    14、1.
    【解析】
    依据调和数的意义,有-=-,解得x=1.
    15、(4,6),(8﹣2,6),(2,6).
    【解析】
    分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
    【详解】
    解:当M为顶点时,AB长为底=8,M在DC中点上,

    所以M的坐标为(4, 6),
    当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
    所以M的坐标为(8﹣2,6);
    当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
    所以M的坐标为(2,6);
    综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
    故答案为:(4,6),(8﹣2,6),(2,6).
    【点睛】
    本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
    16、2.
    【解析】
    根据立方根的定义可得8的立方根为2.
    【点睛】
    本题考查了立方根.
    17、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    18、﹣3(x﹣y)1
    【解析】
    解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.
    点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)P=;(2)P=.
    【解析】
    试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

    从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
    所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
    (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

    从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
    所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
    【解析】
    (1)将P(4,-1)代入,可求出解析式
    (2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
    (3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
    【详解】
    解:(1)由此抛物线顶点为P(4,-1),
    所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
    所以抛物线解析式为:;
    (2)由此抛物线经过点C(4,-1),
    所以 一1=16a+4b+3,即b=-4a-1.
    因为抛物线的开口向上,则有
    其对称轴为直线,而
    所以当-1≤x≤2时,y随着x的增大而减小
    当x=-1时,y=a+(4a+1)+3=4+5a
    当x=2时,y=4a-2(4a+1)+3=1-4a
    所以当-1≤x≤2时,1-4a≤y≤4+5a;
    (3)当a=1时,抛物线的解析式为y=x2+bx+3
    ∴抛物线的对称轴为直线
    由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
    分别代入可得,当x=0时,y=3
    当x=1时,y=b+4
    当x=-时,y=-+3
    ①当一<0,即b>0时,3≤y≤b+4,
    由b+4=6解得b=2
    ②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
    由b+4=6解得b=2(舍去);
    ③当 ,即b<-2时,b+4≤y≤3,
    由b+4=-6解得b=-10
    综上,b=2或-10
    【点睛】
    本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
    21、(1)甲种服装最多购进75件,(2)见解析.
    【解析】
    (1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
    (2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    (1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
    答:甲种服装最多购进75件,
    (2)设总利润为W元,
    W=(120-80-a)x+(90-60)(100-x)
    即w=(10-a)x+1.
    ①当0<a<10时,10-a>0,W随x增大而增大,
    ∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
    ②当a=10时,所以按哪种方案进货都可以;
    ③当10<a<20时,10-a<0,W随x增大而减小.
    当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
    【点睛】
    本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
    22、(20-5)千米.
    【解析】
    分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
    详解:过点B作BD⊥ AC,

    依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
    ∵BD⊥AC,
    ∴∠ABD=30°,∠CBD=53°,
    在Rt△ABD中,设AD=x,
    ∴tan∠ABD=
    即tan30°=,
    ∴BD=x,
    在Rt△DCB中,
    ∴tan∠CBD=
    即tan53°=,
    ∴CD=
    ∵CD+AD=AC,
    ∴x+=13,解得,x=
    ∴BD=12-,
    在Rt△BDC中,
    ∴cos∠CBD=tan60°=,
    即:BC=(千米),
    故B、C两地的距离为(20-5)千米.
    点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
    23、10,1.
    【解析】
    试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
    试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
    当时,(舍去),
    当时,,
    答:所围矩形猪舍的长为10m、宽为1m.
    考点:一元二次方程的应用题.
    24、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    25、 (1)35元;(2)30元.
    【解析】
    (1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
    (2)令w=2000,然后解一元二次方程,从而求出销售单价.
    【详解】
    解:(1)由题意,得:
    W=(x-20)×y
    =(x-20)(-10x+1)
    =-10x2+700x-10000
    =-10(x-35)2+2250
    当x=35时,W取得最大值,最大值为2250,
    答:当销售单价定为35元时,每月可获得最大利润为2250元;
    (2)由题意,得:,
    解得:,,
    销售单价不得高于32元,
    销售单价应定为30元.
    答:李明想要每月获得2000元的利润,销售单价应定为30元.
    【点睛】
    本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
    26、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.
    27、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
    【解析】
    (1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
    (2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
    (3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
    【详解】
    (1)抛物线的解析式为y=a(x+4)(x﹣1),
    即y=ax2+3ax﹣4a,
    ∴﹣4a=2,解得a=﹣,
    ∴抛物线解析式为y=﹣x2﹣x+2;
    (2)△ABC为直角三角形.理由如下:
    当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
    ∵A(﹣4,0),B (1,0),
    ∴AC2=42+22,BC2=12+22,AB2=52=25,
    ∴AC2+BC2=AB2,
    ∴△ABC为直角三角形,∠ACB=90°;
    (3)
    抛物线的对称轴为直线x=﹣,
    连接AC交直线x=﹣于P点,如图,
    ∵PA=PB,
    ∴PB+PC=PA+PC=AC,
    ∴此时PB+PC的值最小,△PBC周长最小,
    设直线AC的解析式为y=kx+m,
    把A(﹣4,0),C(0,2)代入得,解得,
    ∴直线AC的解析式为y=x+2,
    当x=﹣时,y=x+2=,则P(﹣,)
    ∴当P点坐标为(﹣,)时,△PBC周长最小.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.

    相关试卷

    江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析: 这是一份江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届湖南省涟源市重点达标名校中考数学押题卷含解析: 这是一份2022届湖南省涟源市重点达标名校中考数学押题卷含解析,共16页。试卷主要包含了-2的倒数是等内容,欢迎下载使用。

    2021-2022学年湛江市重点名校中考押题数学预测卷含解析: 这是一份2021-2022学年湛江市重点名校中考押题数学预测卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map