2021-2022学年河北省邯郸市临漳县重点名校中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
2.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )
A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
3.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
4.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
5.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为( )
A.π B.π C.π D.π
6.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )
A. B. C. D.
7.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
8.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是( )
A.+3 B.4 C.5 D.3
9.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为( )
A.(4,4) B.(3,3) C.(3,1) D.(4,1)
10.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )
A.1+ B.2+ C.2﹣1 D.2+1
二、填空题(共7小题,每小题3分,满分21分)
11.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.
12.请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________
13.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
14.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.
15.若a2+3=2b,则a3﹣2ab+3a=_____.
16.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.
17.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
19.(5分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.
20.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:
地铁站
A
B
C
D
E
X(千米)
8
9
10
11.5
13
(分钟)
18
20
22
25
28
(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
21.(10分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
22.(10分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
23.(12分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?
若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只
24.(14分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
2、A
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
【详解】
解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
故侧面积=πrl=π×6×4=14πcm1.
故选:A.
【点睛】
此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
3、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
4、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
5、A
【解析】
利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.
【详解】
解:∵PA切⊙O于点A,
∴OA⊥PA,
∴∠OAP=90°,
∵∠C=∠O,∠P=∠C,
∴∠O=2∠P,
而∠O+∠P=90°,
∴∠O=60°,
∴劣弧AB的长=.
故选:A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.
6、C
【解析】
这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.
【详解】
解:如图:
∵正方形的面积是:4×4=16;
扇形BAO的面积是:,
∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,
∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,
故选C.
【点睛】
本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.
7、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
8、C
【解析】
过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.
【详解】
过点C作,且CQ=CP,连接AQ,PQ,
在和中
≌
AP的最大值是5.
故选:C.
【点睛】
考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.
9、A
【解析】
利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.
【详解】
∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,
∴A点与C点是对应点,
∵C点的对应点A的坐标为(2,2),位似比为1:2,
∴点C的坐标为:(4,4)
故选A.
【点睛】
本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.
10、D
【解析】
设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
,解得.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.
【详解】
设这两天此股票股价的平均增长率为x,由题意得
(1﹣10%)(1+x)2=1.
故答案为:(1﹣10%)(1+x)2=1.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为
12、(答案不唯一)
【解析】
根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可.
【详解】
∵抛物线开口向下,并且与y轴交于点(0,1)
∴二次函数的一般表达式中,a<0,c=1,
∴二次函数表达式可以为:(答案不唯一).
【点睛】
本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.
13、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则<,故①是假命题;
②六边形的内角和是其外角和的2倍,根据②真命题;
③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
故答案为②④⑤
【点睛】
本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
14、
【解析】
根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
【详解】
如图,假设线段CD、AB交于点E,
∵AB是O的直径,弦CD⊥AB,
∴
又∵
∴
∴
∴S阴影=S扇形ODB−S△DOE+S△BEC
故答案为:.
【点睛】
考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
15、1
【解析】
利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.
【详解】
解:∵a2+3=2b,
∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,
故答案为1.
【点睛】
本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.
16、12.
【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.
【详解】
解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,
故答案为:12.
【点睛】
本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.
17、
【解析】
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【详解】
解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
∴从中任意摸出一个球,则摸出白球的概率是.
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
三、解答题(共7小题,满分69分)
18、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
【解析】
试题分析:证明≌即可得出结论.
①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
分成三种情况讨论即可.
试题解析:(1)
理由是:如图1,∵四边形EFGD是正方形,
∴
∵四边形ABCD是正方形,
∴
∴
∴≌
∴
∵
∴
∴ 即
(2)①位置关系保持不变,数量关系变为
理由是:如图2,连接EG、DF交于点O,连接OC,
∵四边形EFGD是矩形,
∴
Rt中,OG=OF,
Rt中,
∴
∴D、E、F、C、G在以点O为圆心的圆上,
∵
∴DF为的直径,
∵
∴EG也是的直径,
∴∠ECG=90°,即
∴
∵
∴
∵
∴
∴
②由①知:
∴设
分三种情况:
(i)当时,如图3,过E作于H,则EH∥AD,
∴
∴ 由勾股定理得:
∴
(ii)当时,如图1,过D作于H,
∵
∴
∴
∴
∴
∴
(iii)当时,如图5,
∴
∴
综上所述,当为等腰三角形时,CG的长为或或.
点睛:两组角对应,两三角形相似.
19、(1)见详解;(2)x=18;(3) 416 m2.
【解析】
(1)根据“垂直于墙的长度=可得函数解析式;
(2)根据矩形的面积公式列方程求解可得;
(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.
【详解】
(1)根据题意知,y==-x+;
(2)根据题意,得(-x+)x=384,
解得x=18或x=32.
∵墙的长度为24 m,∴x=18.
(3)设菜园的面积是S,则S=(-x+)x=-x2+x=- (x-25)2+.
∵-<0,∴当x<25时,S随x的增大而增大.
∵x≤24,
∴当x=24时,S取得最大值,最大值为416.
答:菜园的最大面积为416 m2.
【点睛】
本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.
20、 (1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.
【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1关于x的函数解析式为y1=2x+2.
(2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
21、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
【解析】
分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
详解:(1)∵点A在正比例函数y=2x上,
∴把x=4代入正比例函数y=2x,
解得y=8,∴点A(4,8),
把点A(4,8)代入反比例函数y=,得k=32,
(2)∵点A与B关于原点对称,
∴B点坐标为(﹣4,﹣8),
由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×=×224=1,
设点P的横坐标为m(m>0且m≠4),
得P(m,),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=16,
若0<m<4,如图,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=1.
∴(8+)•(4﹣m)=1.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如图,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=1.
∴×(8+)•(m﹣4)=1,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).
点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
22、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.
【解析】
(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;
(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.
【详解】
(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).
设乙队单独施工需要x天完成该项工程,则
,
去分母,得x+1=2x.
解得x=1.
经检验x=1是原方程的解.
答:乙队单独施工需要1天完成.
(2)设乙队施工y天完成该项工程,则
1-
解得y≥2.
答:乙队至少施工l8天才能完成该项工程.
23、(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.
【解析】
表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案.
【详解】
解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得
解得.
答:最多可以做25只竖式箱子.
设制作竖式箱子a只,横式箱子b只,根据题意,
得,
解得:.
答:能制作竖式、横式两种无盖箱子分别为5只和30只.
设裁剪出B型板材m张,则可裁A型板材张,由题意得:
,
整理得,,.
竖式箱子不少于20只,
或22,这时,或,.
则能制作两种箱子共:或.
故答案为47或1.
【点睛】
本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.
24、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
2023年河北省邯郸市名校中考数学二模试卷(含解析): 这是一份2023年河北省邯郸市名校中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省献县重点达标名校2021-2022学年中考数学模试卷含解析: 这是一份河北省献县重点达标名校2021-2022学年中考数学模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,已知点A等内容,欢迎下载使用。
2022届河北省邯郸市大名县重点达标名校中考联考数学试题含解析: 这是一份2022届河北省邯郸市大名县重点达标名校中考联考数学试题含解析,共19页。