2021-2022学年河南省南阳市宛城区书院中学中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
2.若关于x的方程 是一元二次方程,则m的取值范围是( )
A.. B.. C. D..
3.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )
A.4 B.9 C.12 D.16
4.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )
A. B.
C. D.
5.如图,空心圆柱体的左视图是( )
A. B. C. D.
6.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
7.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
8.下列运算正确的是( )
A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+4
9.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是
A. B. C. D.
10.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )
A.8.1×106 B.8.1×105 C.81×105 D.81×104
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
12.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.
13.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.
14.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.
15.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
16.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .
三、解答题(共8题,共72分)
17.(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
18.(8分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
19.(8分)先化简,再求值:,其中x为方程的根.
20.(8分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).
21.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
22.(10分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.
(1)求抛物线的函数表达式;
(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;
(3)若在轴上有且只有一点,使,求的值.
23.(12分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
24.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
(1)填空:每天可售出书 本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
2、A
【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】
由题意得:m﹣1≠0,
解得:m≠1,
故选A.
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
3、B
【解析】
由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
【详解】
∵ED∥BC,
∴△ABC∽△ADE,
∴ =,
∴ ==,
即AE=9;
∴AE=9.
故答案选B.
【点睛】
本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
4、D
【解析】
解:(1)当0≤t≤2a时,∵,AP=x,∴;
(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.
5、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
6、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
7、D
【解析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
8、C
【解析】
直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.
【详解】
A、a3•a2=a5,故A选项错误;
B、a﹣2=,故B选项错误;
C、3﹣2=,故C选项正确;
D、(a+2)(a﹣2)=a2﹣4,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.
9、A
【解析】
分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
详解:∵四边形ABCD是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=65°
故选A.
点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
810 000=8.1×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2
【解析】
【分析】接把点P(a,b)代入反比例函数y=即可得出结论.
【详解】∵点P(a,b)在反比例函数y=的图象上,
∴b=,
∴ab=2,
故答案为:2.
【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
12、
【解析】
如图,过点O作OC⊥AB的延长线于点C,
则AC=4,OC=2,
在Rt△ACO中,AO=,
∴sin∠OAB=.
故答案为.
13、
【解析】
首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
列表得:
第一次
第二次
黑
白
白
黑
黑,黑
白,黑
白,黑
白
黑,白
白,白
白,白
白
黑,白
白,白
白,白
∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,
∴两次都摸到黑球的概率是.
故答案为:.
【点睛】
考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.
14、
【解析】
先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
【详解】
∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
【点睛】
本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.
15、.
【解析】
利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.
【详解】
∵a1=4
a2=,
a3=,
a4=,
…
数列以4,−三个数依次不断循环,
∵2019÷3=673,
∴a2019=a3=,
故答案为:.
【点睛】
此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.
16、
【解析】
作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.
【详解】
解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,
在Rt△ADC中,∵sin∠DAC=,
∴∠DAC=30°,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠ADC=∠ABC=90°,
∴A,B,C,D四点共圆,
∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°
在三角形CBD中,作CH⊥BD于H,
BD=DH+BH=4×cos45°+×cos30°=,
∵CD=DF,CB=BG,
∴GF=2BD=,
△CQR的周长的最小值为.
【点睛】
本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.
三、解答题(共8题,共72分)
17、第二、三季度的平均增长率为20%.
【解析】
设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.
【详解】
设该省第二、三季度投资额的平均增长率为x,由题意,得:
10(1+x)2=14.4,
解得:x1=0.2=20%,x2=﹣2.2(舍去).
答:第二、三季度的平均增长率为20%.
【点睛】
本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.
18、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
【解析】
(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
【详解】
解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
∵OC=1OA,
∴C(0,1);
依题意有:,
解得;
∴y=﹣x2+2x+1.
(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
设P2(x,y),
∵C(0,1),P(2,1),
∴CP=2,
∵D(1,4),
∴CD=<2,
②由①此时CD⊥PD,
根据垂线段最短可得,PC不可能与CD相等;
②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
将y=﹣x2+2x+1代入可得:,
∴ ;
∴P2(,).
综上所述,P(2,1)或(,).
(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
①若Q是直角顶点,由对称性可直接得Q1(1,0);
②若N是直角顶点,且M、N在x轴上方时;
设Q2(x,0)(x<1),
∴MN=2Q1O2=2(1﹣x),
∵△Q2MN为等腰直角三角形;
∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
∵x<1,
∴Q2(,0);
由对称性可得Q1(,0);
③若N是直角顶点,且M、N在x轴下方时;
同理设Q4(x,y),(x<1)
∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
∵y为负,
∴﹣y=2(1﹣x),
∴﹣(﹣x2+2x+1)=2(1﹣x),
∵x<1,
∴x=﹣,
∴Q4(-,0);
由对称性可得Q5(+2,0).
【点睛】
本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
19、1
【解析】
先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
【详解】
解:原式=.
解得,
,
∵时,无意义,
∴取.
当时,原式=.
20、AB≈3.93m.
【解析】
想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.
【详解】
∵AC=BC,D是AB的中点,
∴CD⊥AB,
又∵CD=1米,∠A=27°,
∴AD=CD÷tan27°≈1.96,
∴AB=2AD,
∴AB≈3.93m.
【点睛】
本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.
21、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
【解析】
(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
【详解】
解:证明:∵四边形是平行四边形,
∴,,.
∵点、分别是、的中点,
∴,.
∴.
在和中,
,
∴.
解:当四边形是菱形时,四边形是矩形.
证明:∵四边形是平行四边形,
∴.
∵,
∴四边形是平行四边形.
∵四边形是菱形,
∴.
∵,
∴.
∴,.
∵,
∴.
∴.
即.
∴四边形是矩形.
【点睛】
本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
22、(1).;(2)点坐标为;.(3).
【解析】
分析:(1)根据已知列出方程组求解即可;
(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;
(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.
详解:(1)由题可得:解得,,.
二次函数解析式为:.
(2)作轴,轴,垂足分别为,则.
,,,
,解得,,.
同理,.
,
①(在下方),,
,即,.
,,.
②在上方时,直线与关于对称.
,,.
,,.
综上所述,点坐标为;.
(3)由题意可得:.
,,,即.
,,.
设的中点为,
点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.
轴,为的中点,.
,,,
,即,.
,.
点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.
23、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
24、(1)(300﹣10x).(2)每本书应涨价5元.
【解析】
试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.
试题解析:
(1)∵每本书上涨了x元,
∴每天可售出书(300﹣10x)本.
故答案为300﹣10x.
(2)设每本书上涨了x元(x≤10),
根据题意得:(40﹣30+x)(300﹣10x)=3750,
整理,得:x2﹣20x+75=0,
解得:x1=5,x2=15(不合题意,舍去).
答:若书店想每天获得3750元的利润,每本书应涨价5元.
2022-2023学年河南省南阳市宛城区书院中学九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年河南省南阳市宛城区书院中学九年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年河南省南阳市宛城区中考数学二模试卷(含解析): 这是一份2023年河南省南阳市宛城区中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河南省南阳市宛城区中考数学一模试卷(含解析): 这是一份2023年河南省南阳市宛城区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。