终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析

    立即下载
    加入资料篮
    2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析第1页
    2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析第2页
    2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2021-2022学年广西壮族自治区北海市毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了下列计算正确的是,下列四个多项式,能因式分解的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.函数y=中,x的取值范围是(  )
    A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
    2.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为(  )

    A.36 B.12 C.6 D.3
    3.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为  

    A. B. C. D.
    4.如图是某个几何体的展开图,该几何体是(  )

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    5.下列计算正确的是(  )
    A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3
    6.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    7.下列四个多项式,能因式分解的是(  )
    A.a-1 B.a2+1
    C.x2-4y D.x2-6x+9
    8.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 (  )

    A.2 B.2 C.4 D.3
    9.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )

    A.15m B.25m C.30m D.20m
    10.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
    A.最大值2, B.最小值2 C.最大值2 D.最小值2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.比较大小:_____1.
    12.让我们轻松一下,做一个数字游戏:
    第一步:取一个自然数,计算得;
    第二步:算出的各位数字之和得,计算得;
    第三步:算出的各位数字之和得,再计算得;
    依此类推,则____________
    13.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.
    14.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    15.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.
    16.因式分解:=___.
    三、解答题(共8题,共72分)
    17.(8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.

    18.(8分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
    根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
    19.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
    (1)求两种机器人每台每小时各分拣多少件包裹;
    (2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?

    20.(8分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

    21.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
    (1)求证:AH是⊙O的切线;
    (2)若OB=4,AC=6,求sin∠ACB的值;
    (3)若,求证:CD=DH.

    22.(10分)如图,∠A=∠B=30°
    (1)尺规作图:过点C作CD⊥AC交AB于点D;
    (只要求作出图形,保留痕迹,不要求写作法)
    (2)在(1)的条件下,求证:BC2=BD•AB.

    23.(12分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    24.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
    填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.
    故选D.
    点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.
    2、D
    【解析】
    设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论. 
    解:设△OAC和△BAD的直角边长分别为a、b, 
    则点B的坐标为(a+b,a﹣b).
    ∵点B在反比例函数的第一象限图象上, 
    ∴(a+b)×(a﹣b)=a2﹣b2=1. 
    ∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2. 
    故选D.
    点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
    3、B
    【解析】
    在两个直角三角形中,分别求出AB、AD即可解决问题;
    【详解】
    在Rt△ABC中,AB=,
    在Rt△ACD中,AD=,
    ∴AB:AD=:=,
    故选B.
    【点睛】
    本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.
    4、A
    【解析】
    侧面为长方形,底面为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故本题选择A.
    【点睛】
    会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.
    5、B
    【解析】
    分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
    详解:A、不是同类项,无法计算,故此选项错误;
    B、 正确;
    C、 故此选项错误;
    D、 故此选项错误;
    故选:B.
    点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
    6、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    7、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    8、A
    【解析】
    连接CC′,
    ∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
    ∴∠ADC′=∠ADC=30°,CD=C′D,
    ∴∠CDC′=∠ADC+∠ADC′=60°,
    ∴△DCC′是等边三角形,
    ∴∠DC′C=60°,
    ∵在△ABC中,AD是BC边的中线,
    即BD=CD,
    ∴C′D=BD,
    ∴∠DBC′=∠DC′B=∠CDC′=30°,
    ∴∠BC′C=∠DC′B+∠DC′C=90°,
    ∵BC=4,
    ∴BC′=BC•cos∠DBC′=4×=2,
    故选A.

    【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
    9、D
    【解析】
    根据三角形的中位线定理即可得到结果.
    【详解】
    解:由题意得AB=2DE=20cm,
    故选D.
    【点睛】
    本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    10、D
    【解析】
    设抛物线与x轴的两交点间的横坐标分别为:x1,x2,
    由韦达定理得:
    x1+x2=m-3,x1•x2=-m,
    则两交点间的距离d=|x1-x2|== ,
    ∴m=1时,dmin=2.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先将1化为根号的形式,根据被开方数越大值越大即可求解.
    【详解】
    解: , ,

    故答案为>.
    【点睛】
    本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.
    12、1
    【解析】
    根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
    【详解】
    解:由题意可得,
    a1=52+1=26,
    a2=(2+6)2+1=65,
    a3=(6+5)2+1=1,
    a4=(1+2+2)2+1=26,

    ∴2019÷3=673,
    ∴a2019= a3=1,
    故答案为:1.
    【点睛】
    本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
    13、10π
    【解析】
    解:根据圆锥的侧面积公式可得这个圆锥的侧面积=•1π•4•5=10π(cm1).
    故答案为:10π
    【点睛】
    本题考查圆锥的计算.
    14、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    15、
    【解析】
    仿照已知方法求出所求即可.
    【详解】
    令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.
    故答案为:.
    【点睛】
    本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
    16、
    【解析】
    分析:先提公因式,再利用平方差公式因式分解即可.
    详解:a2(a-b)-4(a-b)
    =(a-b)(a2-4)
    =(a-b)(a-2)(a+2),
    故答案为:(a-b)(a-2)(a+2).
    点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.

    三、解答题(共8题,共72分)
    17、证明见解析.
    【解析】
    试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
    试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
    ∵M是BC的中点,∴BM=CM.
    在△BDM和△CEM中,∵,
    ∴△BDM≌△CEM(SAS).∴MD=ME.
    考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
    18、(1);(2)
    【解析】
    (1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.
    (2)由题意可得,出现的所有可能性是:
    (A,A)、(A,B)、(A,C)、(A,C)、
    (A,A)、(A,B)、(A,C)、(A,C)、
    (B,A)、(B,B)、(B,C)、(B,C)、
    (C,A)、(C,B)、(C,C)、(C,C),
    ∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.
    考点:列表法与树状图法;概率公式.
    19、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
    【解析】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
    (2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
    【详解】
    (1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
    由题意得,,
    解得,,
    答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
    (2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
    由题意得,30a+40(200﹣a)≥7000,
    解得:a≤100,则最多应购进A种机器人100台.
    【点睛】
    本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
    20、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;

    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    21、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
    (2)利用正弦的定义计算;
    (3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
    【详解】
    (1)证明:连接OA,
    由圆周角定理得,∠ACB=∠ADB,
    ∵∠ADE=∠ACB,
    ∴∠ADE=∠ADB,
    ∵BD是直径,
    ∴∠DAB=∠DAE=90°,
    在△DAB和△DAE中,

    ∴△DAB≌△DAE,
    ∴AB=AE,又∵OB=OD,
    ∴OA∥DE,又∵AH⊥DE,
    ∴OA⊥AH,
    ∴AH是⊙O的切线;
    (2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
    ∴∠E=∠ACD,
    ∴AE=AC=AB=1.
    在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
    ∴sin∠ADB==,即sin∠ACB=;
    (3)证明:由(2)知,OA是△BDE的中位线,
    ∴OA∥DE,OA=DE.
    ∴△CDF∽△AOF,
    ∴=,
    ∴CD=OA=DE,即CD=CE,
    ∵AC=AE,AH⊥CE,
    ∴CH=HE=CE,
    ∴CD=CH,
    ∴CD=DH.

    【点睛】
    本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
    22、见解析
    【解析】
    (1)利用过直线上一点作直线的垂线确定D点即可得;
    (2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
    【详解】
    (1)如图所示,CD即为所求;

    (2)∵CD⊥AC,
    ∴∠ACD=90°
    ∵∠A=∠B=30°,
    ∴∠ACB=120°
    ∴∠DCB=∠A=30°,
    ∵∠B=∠B,
    ∴△CDB∽△ACB,
    ∴,
    ∴BC2=BD•AB.
    【点睛】
    考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    23、观景亭D到南滨河路AC的距离约为248米.
    【解析】
    过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
    【详解】
    过点D作DE⊥AC,垂足为E,设BE=x,
    在Rt△DEB中,tan∠DBE=,
    ∵∠DBC=65°,
    ∴DE=xtan65°.
    又∵∠DAC=45°,
    ∴AE=DE.
    ∴132+x=xtan65°,
    ∴解得x≈115.8,
    ∴DE≈248(米).
    ∴观景亭D到南滨河路AC的距离约为248米.

    24、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.

    相关试卷

    2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析:

    这是一份2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了一元二次方程的根的情况是,八边形的内角和为,有以下图形等内容,欢迎下载使用。

    2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析:

    这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。

    2021-2022学年广西壮族自治区南宁市广西大附属中学毕业升学考试模拟卷数学卷含解析:

    这是一份2021-2022学年广西壮族自治区南宁市广西大附属中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,﹣2018的绝对值是,下列运算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map