中考专题11 二次函数解答压轴题-三年(2019-2021)中考真题数学分项汇编(山东专用)(解析版)
展开
这是一份中考专题11 二次函数解答压轴题-三年(2019-2021)中考真题数学分项汇编(山东专用)(解析版),共77页。试卷主要包含了,连接AC,BC等内容,欢迎下载使用。
专题11 二次函数解答压轴题
1.(2021·山东中考真题)在平面直角坐标系中,抛物线的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点,在抛物线上,且,则m的取值范围是 ;(直接写出结果即可)
(3)当时,函数y的最小值等于6,求m的值.
【答案】(1)顶点A的坐标为;(2);(3)或
【分析】
(1)将抛物线解析式化成的形式,即可求得顶点A的坐标;
(2)将,代入抛物线中求得和的值,然后再解不等式即可求解;
(3)分类讨论,分对称轴在1的左侧、对称轴在3的右侧、对称轴在1,3之间共三种情况分别求出函数的最小值,进而求出m的值.
【详解】
解:(1)由题意可知:
抛物线,
∴顶点A的坐标为;
(2)将代入中,
得到,
将代入中,
得到,
由已知条件知:,
∴,
整理得到:,
解得:,
故m的取值范围是:;
(3)二次函数的开口向上,故自变量离对称轴越远,其对应的函数值越大,二次函数的对称轴为,
分类讨论:
①当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故符合题意;
②当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故或都不符合题意;
③当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故符合题意;
综上所述,或.
【点睛】
本题考查待定系数求二次函数的解析式,二次函数的最值问题,不等式的解法等,计算过程中细心,熟练掌握二次函数的图形及性质是解决本题的关键.
2.(2021·山东中考真题)二次函数的图象经过点,,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴于点D.
(1)求二次函数的表达式;
(2)连接,当时,求直线的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
【答案】(1);(2);(3)有最大值为,P点坐标为
【分析】
(1)将,代入中,列出关于a、b的二元一次方程组,求出a、b的值即可;
(2)设与y轴交于点E,根据轴可知,,当,即,由此推断为等腰三角形,设,则,所以,由勾股定理得,解出点E的坐标,用待定系数法确定出BP的函数解析式即可;
(3)设与交于点N,过B作y轴的平行线与相交于点M.由A、C两点坐标可得所在直线表达式,求得 M点坐标,则,由,可得,,设,则,根据二次函数性质求解即可.
【详解】
解:(1)由题意可得:
解得:,
∴二次函数的表达式为;
(2)设与y轴交于点E,
∵轴,
,
,
,
,
,设,
则,,
在中,由勾股定理得,
解得,
,
设所在直线表达式为
解得
∴直线的表达式为.
(3)设与交于点N.
过B作y轴的平行线与相交于点M.
由A、C两点坐标分别为,
可得所在直线表达式为
∴M点坐标为,
由,可得,
设,则
,
∴当时,有最大值0.8,
此时P点坐标为.
【点睛】
本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.
3.(2021·山东中考真题)如图,直线分别交轴、轴于点A,B,过点A的抛物线与轴的另一交点为C,与轴交于点,抛物线的对称轴交于E,连接交于点F.
(1)求抛物线解析式;
(2)求证:;
(3)P为抛物线上的一动点,直线交于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与相似?若存在,求点P的横坐标;若不存在,请说明理由.
【答案】(1);(2)证明见解析;(3)存在,点P 的横坐标为或±.
【分析】
(1)先求出点A、B的坐标,然后再利用待定系数法求解即可;
(2)先求出直线AD的解析式为y=-x+3,进而得到点E的坐标为(1,2),运用三角函数定义可得即∠OAB=∠OEG=90°即可证得结论;
(3)先求出直线CD解析式为y=3x+3,再根据以A,O,M为顶点的三角形与△ACD相似,分两种情况:①当△AOM ∽△ACD时,∠AOM=∠ACD,从而得出OM//CD,进而得出直线OM的解析式为y=3x,再结合抛物线的解析式即可确定点P的横坐标;②当△AMO∽△ACD时,利用,求出AM,进而求得点M的坐标,求得直线AM的解析式,进而完成解答.
【详解】
解:(1)∵直线分别交轴、轴于点A,B
∴A(3,0),B(0,),
∵抛物线经过A(3,0),D(0,3),
∴,解得
∴该抛物线的解析式为;
(2)∵,
∴抛物线的对称轴为直线x=1,
设直线AD的解析式为y=kx+a,
将A(3,0),D(0,3)代入得: ,解得
∴直线AD的解析式为y=-x+3,
∴E(1,2),G(1,0),
∵∠EGO=90°,
∴
∵OA=3,OB=,∠A0B=90°,
∴
∴
∴∠OAB=∠OEG,
∵∠OEG+∠EOG=90°,
∴∠OAB+∠EOG=90°,
∴∠AFO=90°,
∴OE⊥AB;
(3)存在.
∵A(3,0),抛物线的对称轴为直线x=1,
∴C(-1,0),
∴AC=3-(-1)=4,
∵OA=OD=3,∠AOD=90°,
∴,
设直线CD解析式为y=mx+n,则:
,解得
∴直线CD解析式为y=3x+3,
①当△AOM∽△ACD时,∠AOM=∠ACD,如图2所示,
∴OM//CD,
∴直线OM的解析式为y=3x,
∵抛物线的解析式为y=-x2+2x+3,
∴3x=-x2+2x+3,解得:;
②当△AMO∽△ACD时,如图3所示,
∴
∴,
过点M作MG⊥x轴于点G,则∠AGM=90°,
∵∠OAD=45°,
∴
∴OG=OA-AG=3-2=1,
∴M(1,2),
设直线OM解析式为y=m1x,将M(1,2)代入,得:m1=2,
∴直线OM解析式为y=2x,
∵抛物线的解析式为y=-x2+2x+3
∴2x=-x2+2x+3,解得:x=±.
综上,点P的横坐标为或±.
【点睛】
本题属于二次函数的综合题,主要考查了二次函数图象和性质、待定系数法求函数解析式、三角函数定义、相似三角形的判定和性质等知识点,考查知识点较多、综合性较强、难度较大,灵活运用待定系数法、相似三角形的判定和性质以及数形结合思想成为解答本题的关键.
4.(2021·山东中考真题)如图,抛物线与轴交于A、B两点,与轴交于点C,直线过B、C两点,连接AC.
(1)求抛物线的解析式;
(2)求证:;
(3)点是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求的最小值.
【答案】(1);(2)见解析;(3)
【分析】
(1)先利用直线得到点B和点C的坐标,利用待定系数法求解;
(2)根据解析式求得点A的坐标,求出两个三角形的边长,根据两组对应边成比例夹角相等求证;
(3)设点D的坐标为,将线段DE的长用函数关系式表示为顶点式形式,利用函数的性质得到当时,线段DE的长度最大,得到点D的坐标,再利用轴对称及勾股定理求出答案即可.
【详解】
(1)解:∵直线分别与轴和轴交于点B和点C,
∴点B的坐标为(4,0),点C的坐标为(0,2),
把,分别代入,
得,
解得,
∴抛物线的解析式为.
(2)∵抛物线与x轴交于点A,
∴,
解得,,
∴点A的坐标为,
∴,,
在中,,,
∴,
∴,
∵,
∴,
又∵,
∴.
(3)设点D的坐标为
则点E的坐标为
∴
=
∵,
∴当时,线段DE的长度最大.
此时,点D的坐标为,
∵,
∴点C和点M关于对称轴对称,
连接CD交对称轴于点P,此时最小.
连接CM交直线DE于点F,则,点F的坐标为,
∴,
∵
∴的最小值.
.
【点睛】
此题考查的是二次函数的综合知识,利用待定系数法求函数解析式,函数图象与坐标轴的交点问题,函数的最值问题,轴对称的性质,勾股定理,证明两个三角形相似,熟练掌握各知识点是解题的关键.
5.(山东省淄博市2021年中考数学试题)如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,连接.
(1)若,求抛物线对应的函数表达式;
(2)在(1)的条件下,点位于直线上方的抛物线上,当面积最大时,求点的坐标;
(3)设直线与抛物线交于两点,问是否存在点(在抛物线上).点(在抛物线的对称轴上),使得以为顶点的四边形成为矩形?若存在,求出点的坐标;若不存在,说明理由.
【答案】(1);(2);(3)当以为顶点的四边形成为矩形时,点,.
【分析】
(1)由题意易得,则有,然后把点C的坐标代入求解即可;
(2)由(1)可得,,然后可求出线段BC的解析式为,过点P作PE∥y轴,交BC于点E,设,则有,进而可根据铅垂法进行求解点P的坐标;
(3)由题意易得,抛物线的对称轴为,则可得,点F的横坐标为,①当以GB为矩形的对角线时,根据中点坐标公式可得点E的横坐标为,进而可得,,然后根据相似三角形可求解;②当以GB为矩形的对边时,最后分类求解即可.
【详解】
解:(1)∵,
∴,
∵,
∴,
∴,
把点C的坐标代入得:,解得:,
∴抛物线解析式为;
(2)由(1)可得抛物线解析式为,,,
设线段BC的解析式为,把点B、C代入得:
,解得:,
∴线段BC的解析式为,
过点P作PE∥y轴,交BC于点E,如图所示:
设,则有,
∴,
设的面积为S,由铅垂法可得△PCB的面积可以点B、C的水平距离为水平宽,PE为铅垂高,则有:
,
∴当a=2时,S有最大值,
∴点;
(3)存在,理由如下:
由题意可把点B的坐标代入直线得:,
∴,
联立抛物线与直线BG的解析式得:,
解得:,
∴,
由抛物线可得对称轴为,
∴点F的横坐标为,
①当以GB为矩形的对角线时,如图所示:
∴根据中点坐标公式可得点E的横坐标为,即为,
∴,
根据中点坐标公式可知,即,
∴,
∴,
∵,且四边形是矩形,
∴点E、F分别落在x轴的两侧才能构成矩形,即,
分别作EH⊥x轴于点H,过点G、B作过点F与x轴平行的直线的垂线,分别交于点M、N,如图,
∴,
∵四边形是矩形,
∴,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴,即,
∴,解得:(负根舍去),
∴,;
②当以GB为矩形的边时,不存在以点E、F、G、B顶点的四边形为矩形;
综上所述:当以为顶点的四边形成为矩形时,点,.
【点睛】
本题主要考查二次函数的综合、矩形的性质及相似三角形的性质与判定,熟练掌握二次函数的综合、矩形的性质及相似三角形的性质与判定是解题的关键.
6.(2021·山东中考真题)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
(1)求抛物线的表达式和AC所在直线的表达式;
(2)将ABC沿BC所在直线折叠,得到DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,BPQ的面积记为S1,ABQ的面积记为S2,求的值最大时点P的坐标.
【答案】(1);;(2)点D不在抛物线的对称轴上,理由见解析;(3)点P坐标为(-2,-3)
【分析】
(1)利用待定系数法求解即可;
(2)先求出点B坐标,再结合点A、C坐标利用相似三角形的判定及性质可证得,延长AC 到点D,使 DC=AC,过点D作DEy轴,垂足为点E,由此可得,进而可求得点D的横坐标为-1,最后根据抛物线的对称轴是直线即可判断出点B不在对称轴上;
(3)先利用待定系数法求出直线BC的函数表达式,然后过点A作x轴的垂线交BC的延长线于点M,则点M坐标为,过点P作x轴的垂线交BC于点N,垂足为点H,设点P 坐标为,则点N坐标为,根据相似三角形的判定及性质可得,由此可得答案.
【详解】
解;(1)∵抛物线过A(1,0),C(0,﹣2),
∴,
解得:,
∴抛物线的表达式为 .
设 AC 所在直线的表达式为,
∴,
解得,
∴AC 所在直线的表达式为;
(2)点D不在抛物线的对称轴上,理由是∶
∵抛物线的表达式是,
∴令y=0,则,
解得,,
∴点B坐标为(-4,0).
,,
∴.
又
∴.
∴.
∴,
∴.
∴将△ABC沿 BC折叠,点 A 的对应点D一定在直线AC上.
如下图,延长AC 到点D,使 DC=AC,过点D作DEy轴,垂足为点E.
又∵,
∴,
∴DE=OA=1,
∴点D的横坐标为-1,
∵抛物线的对称轴是直线,
∴点D不在抛物线的对称轴上;
(3)设过点 B,C的直线表达式为,
∵点C 坐标是(0,-2),点B 坐标是(-4,0),
∴过点 B,C的直线表达式为.
过点 A 作x 轴的垂线交BC的延长线于点M,
则点M坐标为,
如下图,过点P作x轴的垂线交BC于点N,垂足为点H,
设点P 坐标为,则点N坐标为,
∴.
∵,
∴,
∵若分别以PQ,AQ为底计算△BPQ与△BAQ的面积,则△BPQ与△BAQ的面积的比为,
即.
∴,
∵,
∴当m=-2时,的最大值为,
将m=-2代入,得,
∴当取得最大值时,点P坐标为(-2,-3).
【点睛】
本题考查了用待定系数法求函数表达式,二次函数图像与性质,相似三角形的判定及性质,熟练掌握二次函数的图像与性质及相似三角形的判定与性质是解决本题的关键.
7.(2021·山东中考真题)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过坐标原点和点,顶点为点.
(1)求抛物线的关系式及点的坐标;
(2)点是直线下方的抛物线上一动点,连接,,当的面积等于时,求点的坐标;
(3)将直线向下平移,得到过点的直线,且与轴负半轴交于点,取点,连接,求证:.
【答案】(1),;(2)或;(3)证明见解析.
【分析】
(1)先根据直线求出点的坐标,再将点和原点坐标代入抛物线的解析式即可得;
(2)如图(见解析),先求出直线与抛物线的另一个交点的坐标为,再设点的坐标为,从而可得点的坐标为,然后分和两种情况,分别利用三角形的面积公式可得一个关于的一元二次方程,解方程即可得;
(3)如图(见解析),先根据一次函数图象的平移规律求出直线的解析式为,再利用待定系数法求出直线的解析式,从而可得点的坐标,然后利用两点之间的距离公式可得的长,根据等腰直角三角形的判定与性质可得,最后根据三角形的外角性质即可得证.
【详解】
解:(1)对于函数,
当时,,解得,即,
当时,,即,
将点和原点代入得:,
解得,
则抛物线的关系式为,
将化成顶点式为,
则顶点的坐标为;
(2)设直线与抛物线的另一个交点为点,
联立,解得或,
则,
过点作轴的平行线,交直线于点,
设点的坐标为,则点的坐标为,
,
由题意,分以下两种情况:
①如图,当时,
则,
,
因此有,
解得或,均符合题设,
当时,,即,
当时,,即;
②如图,当时,
则,
,
因此有,
解得或,均不符题设,舍去,
综上,点的坐标为或;
(3)由题意得:,
将点代入得:,解得,
则直线的解析式为,
如图,过点作于点,
可设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
联立,
解得,即,
,
,
,
,
又,
是等腰直角三角形,,
由三角形的外角性质得:,
.
【点睛】
本题考查了二次函数与一次函数的综合、一次函数图象的平移、等腰直角三角形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.
8.(2021·山东中考真题)如图,在平面直角坐标系中,已知抛物线交轴于,两点,交轴于点.
(1)求该抛物线的表达式;
(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
参考:若点、,则线段的中点的坐标为.
【答案】(1)该抛物线的表达式为:;(2)面积最大值为8,此时P点的坐标为:P(2,-6);(3)或或或
【分析】
(1)将两个点分别代入抛物线可得关于a,b的二元一次方程组,可解得a,b;
(2)设出P、Q两点坐标,应用三角形相似,及三角形面积公式,代入化简可得一个二次函数,求其最大值即可;
(3)抛物线的平移可确定抛物线解析式及对称轴,设出点E、F,应用中点坐标公式及矩形特点分成的三角形为直角三角形,可得出答案.
【详解】
解:(1)将A(-1,0),B(4,0)代入抛物线可得:
,
解得:,
∴该抛物线的表达式为:;
(2)过点P作PN⊥x轴于点N,如图所示:
设且,,
∴,,,
∵,
∴,
∴,即,
∴,
∴,
∴,
∵点在抛物线上,
∴,
∴,,
根据抛物线的基本性质:对称轴为在内,
∴在取得最大值,代入得:,
当时,,
∴面积的最大值为8,此时点P的坐标为:.
(3)在(2)的条件下,原抛物线解析式为,将抛物线向右平移经过点,可知抛物线向右平移了个单位长度,
∴可得:,
化简得平移后的抛物线:,
对称轴为:,
由(2)得:A(-1,0),,点E在对称轴上,
∴设E(3,e),点F(m,n),矩形AEPF,
当以AP为矩形的对角线时,则AP的中点坐标为:,EF的中点坐标为:,
根据矩形的性质可得,两个中点坐标相同,可得:
解得:
∵矩形AEPF,
∴为直角三角形,
∴,③
,
,
,
代入③化简可得:,④
∴将②代入④可得:,
化简得:,
根据判别式得:,
∴,
∴或;
当以AP为矩形的边时,如图所示:
过点P分别作PG⊥x轴于点G,PH∥x轴,过点F作PH的垂线,垂足为H,设抛物线的对称轴与x轴的交点为M,如图,
∴,,AM=4,
∴,
∵四边形是矩形,
∴,AE=PF,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴FH=2,
∵点,
∴,
当以AP为矩形的边时,如图所示:
同理可得;
综上所述:以、、、为顶点的四边形为矩形,或或或
【点睛】
题目考查确定二次函数解析式及其基本性质、矩形的性质、勾股定理等,难点主要是依据图像确定各点、线段间的关系,得出答案.
9、(2020 菏泽)如图,抛物线与轴相交于,两点,与轴相交于点,,,直线是抛物线的对称轴,在直线右侧的抛物线上有一动点,连接,,,.
(1)求抛物线的函数表达式;
(2)若点在轴的下方,当△BCD的面积是时,求的面积;
(3)在(2)的条件下,点是轴上一点,点是抛物线上一动点,是否存在点,使得以点,,,为顶点,以为一边的四边形是平行四边形,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在,或或.
【解析】
【分析】
(1)直接利用待定系数法可求得函数解析式;
(2)先求出函数的对称轴和直线BC的函数表达式,过D作DE⊥OB交OB于点F,交BC于点E,用式子表示出△BCD的面积从而求出D的坐标,进一步可得的面积;
(3)根据平行四边形的性质得到,结合对称轴和点D坐标易得点N的坐标.
【详解】解:(1)∵OA=2,OB=4,
∴A(-2,0),B(4,0),
将A(-2,0),B(4,0)代入得:
,
解得:
∴抛物线的函数表达式为:;
(2)由(1)可得抛物线的对称轴l:,,
设直线BC:,
可得:
解得,
∴直线BC的函数表达式为:,
如图1,过D作DE⊥OB交OB于点F,交BC于点E,
设,则,
∴,
由题意可得
整理得
解得(舍去),
∴,
∴
∴
;
(3)存在
由(1)可得抛物线的对称轴l:,由(2)知,
①如图2
当时,四边形BDNM即为平行四边形,
此时MB=ND=4,点M与点O重合,四边形BDNM即为平行四边形,
∴由对称性可知N点横坐标为-1,将x=-1代入
解得
∴此时,四边形BDNM即为平行四边形.
②如图3
当时,四边形BDMN为平行四边形,
过点N做NP⊥x轴,过点D做DF⊥x轴,由题意可得NP=DF
∴此时N点纵坐标为
将y=代入,
得,解得:
∴此时或,四边形BDMN为平行四边形.
综上所述, 或或.
【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题.
10、(2020 德州).如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标
…
…
P的坐标
…
…
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.
【答案】(1),线段垂直平分线上的点与这条线段两个端点的距离相等;(2)图见解析,抛物线;(3)见解析;(4);(5)
【解析】
【分析】
(1)由尺规作图的步骤可知,HG是AM的中垂线,结合中垂线的性质,即可得到答案;
(2)根据第(1)的作图方法,得到相应点P的位置,即可求解;
(3)用平滑的曲线作出图象,即可;
(4)过点P作轴于点E,用含x,y的代数式表示,,,结合勾股定理,即可得到答案;
(5)连接,由题意得当时,在的外接圆上,弧所对的圆心角为60°,△BDC的外接圆圆心为坐标原点O,设,求出b的值,进而即可求解.
【详解】解:(1) 线段垂直平分线上的点与这条线段两个端点的距离相等
(2)
M的坐标
…
…
P的坐标
…
…
(3)草图见图2:形状:抛物线
(4)如图1,过点P作轴于点E,
,,
在RT△PAE中,
即
化简,得
∴y关于x的函数解析式为.
(5)连接,易得,又
∴△OBC为等边三角形,∴
当时,在的外接圆上,弧所对的圆心角为60°
其圆心在的垂直平分线y轴上,
∴△BDC的外接圆圆心为坐标原点O,
设,则,即 ①
又点D该抛物线上
∴ ②
由①②联立解得:(舍去)
数形结合可得,
当时,点D的纵坐标的取值范围为
【点睛】本题主要考查尺规作作中垂线,二次函数的图象和性质,圆周角定理,解题关键是:熟练掌握垂直平分线的性质定理,构造三角形的外接圆.
11、(2020 济宁)我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
【答案】(1);(2)相切,理由见解析
【解析】
【分析】
(1)连接CD,CB,过C作CF⊥AB,分别表示出BF和CF,再在△BCF中利用勾股定理构造方程求解即可得到圆C半径以及点C坐标,从而得到标准方程;
(2)由(1)可得点A坐标,求出抛物线表达式,得到点E坐标,再求出直线AE的表达式,联立直线AE和圆C的表达式,通过判断方程根的个数即可得到两者交点个数,从而判断位置关系.
【详解】解:连接CD,CB,过C作CF⊥AB,
∵点D(0,4),B(8,0),设圆C半径为r,圆C与y轴切于点D,
则CD=BC=OF=r,CF=4,
∵CF⊥AB,
∴AF=BF=8-r,
在△BCF中,,
即,
解得:r=5,
∴CD=OF=5,即C(5,4),
∴圆C的标准方程为:;
(2)由(1)可得:BF=3=AF,则OA=OB-AB=2,
即A(2,0),
设抛物线表达式为:,将A,B,D坐标代入,
,解得:,
∴抛物线表达式为:,
∴可得点E(5,),
设直线AE表达式为:y=mx+n,将A和E代入,
可得:,解得:,
∴直线AE的表达式为:,
∵圆C的标准方程为,
联立,
解得:x=2,
故圆C与直线AE只有一个交点,横坐标为2,
即圆C与直线AE相切.
【点睛】本题考查了圆的新定义,二次函数,一次函数,切线的判定,垂径定理,有一定难度,解题的关键是利用转化思想,将求位置关系转化为方程根的个数问题.
12、(2020 聊城)如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.
(1)求出二次函数和所在直线的表达式;
(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;
(3)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与△DCE相似,如果存在,求出点的坐标,如果不存在,请说明理由.
【答案】(1),;(2);(3)存在,点的坐标是.
【解析】
【分析】
(1)将,代入,解出a,b得值即可;求出C点坐标,将C,B代入线段所在直线的表达式,求解即可;
(2)根据题意只要,四边形即为平行四边形,先求出点D坐标,然后求出DE,设点的横坐标为,则,,得出,根据,得,求解即可;
(3)由(2)知,,根据与有共同的顶点,且在的内部,只有当时,,利用勾股定理,可得
,,根据,即,解出t值,即可得出答案.
【详解】解:(1)由题意,将,代入,
得,
解得,
∴二次函数的表达式,
当时,,得点,又点,
设线段所在直线的表达式,
∴,解得,
∴所在直线的表达式;
(2)∵轴,轴,
∴,
只要,此时四边形即为平行四边形,
由二次函数,
得点,
将代入,即,得点,
∴,
设点横坐标为,则,,
由,得,
解之,得(不合题意舍去),,
当时,,
∴;
(3)由(2)知,,
∴,
又与有共同的顶点,且在的内部,
∴,
∴只有当时,,
由,,,
利用勾股定理,可得,,
由(2)以及勾股定理知,,
,
∴,即,
∵,
∴,
∴,
当时,,
∴点的坐标是.
【点睛】本题属于二次函数综合题,考查了二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理,灵活运用知识点是解题关键.
13、(泰安市2020年)若一次函数的图象与轴,轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作轴交抛物线于点D,点E在抛物线上(轴左侧),若恰好平分.求直线的表达式;
(3)如图(2),若点P在抛物线上(点P在轴右侧),连接交于点F,连接,.
①当时,求点P的坐标;
②求的最大值.
【答案】(1);(2);(3)①点或;②
【解析】
【分析】
(1)先求的点A、C的坐标,再用待定系数法求二次函数的解析式即可;
(2)设交于点M.由可得,.再由,根据平行线的性质可得,所以.已知平分,根据角平分线的定义可得.利用AAS证得.由全等三角形的性质可得. 由此即可求得点M的坐标为(0,-1).再由,即可求得直线解析式为;
(3)①由可得.过点P作交于点N,则.根据相似三角形的性质可得.由此即可求得.设,可得.所以.由此即可得=2,解得.即可求得点或;②由①得.即.再根据二次函数的性质即可得.
【详解】(1)解:令,得.令时,.
∴.
∵抛物线过点,
∴.
则,将代入得
解得
∴二次函数表达式为.
(2)解:设交于点M.
∵,
∴,.
∵,
∴.
∴.
∵平分,
∴.
又∵,
∴.
∴.
由条件得:.
∴.
∴.
∴.
∵,
∴直线解析式为.
(3)①,
∴.
过点P作交于点N,则.
∴.
∵,
∴.
∵直线的表达式为,
设,
∴.
∴.
∴,则,解得.
∴点或.
②由①得:.
∴.
∴有最大值,.
【点睛】本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数及一次函数的解析式,相似三角形的判定与性质,解决第(2)问时,求得点M的坐标是关键;解决(3)①问时,作出辅助线求得是解题的关键;解决(3)②问时,构建函数模型是解决问题的关键.
14、(2020年枣庄市)如图,抛物线交x轴于,两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作,垂足为点N.设M点的坐标为,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【答案】(1);(2),当时,PN有最大值,最大值为. (3)满足条件的点Q有两个,坐标分别为:,.
【解析】
【分析】
(1)将点A、B的坐标代入解析式中求解即可;
(2)由(1)求得点C坐标,利用待定系数法求得直线BC的解析式,然后用m表示出PN,再利用二次函数的性质即可求解;
(3)分三种情况:①AC=CQ;②AC=AQ;③CQ=AQ,分别求解即可.
【详解】解:(1)将,代入,得,解之,得.
所以,抛物线表达式为.
(2)由,得.
将点、代入,得,解之,得.
所以,直线BC的表达式为:.
由,得,.
∴
∵,∴.
∴.
∴.
.
∵
∴当时,PN有最大值,最大值为.
(3)存在,理由如下:由点,,知.
①当时,过Q作轴于点E,易得,
由,得,(舍)
此时,点;
②当时,则.
在中,由勾股定理,得.
解之,得或(舍)
此时,点;
③当时,
由,得(舍).
综上知所述,可知满足条件的点Q有两个,坐标分别为:,.
【点睛】本题是一道二次函数与几何图形的综合题,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.
15、(2020 滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.
(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.
【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
∵抛物线经过B(0,﹣),
∴﹣=4a﹣1,
∴a=,
∴抛物线的解析式为y=(x﹣2)2﹣1.
(2)证明:∵P(m,n),
∴n=(m﹣2)2﹣1=m2﹣m﹣,
∴P(m,m2﹣m﹣),
∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,
∵F(2,1),
∴PF==,
∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,
∴d2=PF2,
∴PF=d.
(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,
∴DQ+QF的值最小时,△DFQ的周长最小,
∵QF=QH,
∴DQ+DF=DQ+QH,
根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
∴DQ+QH的最小值为3,
∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)
16.(青岛市2020年)已知:如图,在四边形和中,,,点在上,,,,延长交于点,点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为,过点作于点,交于点.设运动时间为.
解答下列问题:
(1)当为何值时,点在线段的垂直平分线上?
(2)连接,作于点,当四边形为矩形时,求的值;
(3)连接,,设四边形的面积为,求与的函数关系式;
(4)点在运动过程中,是否存在某一时刻,使点在的平分线上?若存在,求出的值;若不存在,请说明理由.
【答案】(1) t=;(2)t=3;(3)S与t的函数关系式为;(4)存在,t=,
【解析】
【分析】
(1)要使点M在线段CQ的垂直平分线上,只需证CM=MQ即可;
(2)由矩形性质得PH=QN,由已知和AP=2t,MQ=t,解直角三角形推导出PH、QN,进而得关于t的方程,解之即可;
(3)分别用t表示出梯形GHFM的面积、△QHF的面积、△CMQ的面积,即可得到S与t的函数关系式;
(4)延长AC交EF与T,证得AT⊥EF,要使点P在∠AFE的平分线上,只需PT=PH,分别用t表示PT、PH,代入得关于t的方程,解之即可.
【详解】
(1)当=时,点在线段的垂直平分线上,理由为:
由题意,CE=2,CM∥BF,
∴即:,
解得:CM=,
要使点在线段的垂直平分线上,
只需QM=CM=,
∴t=;
(2)如图,∵,,,
∴AC=10,EF=10,sin∠PAH=,cos∠PAH=,sin∠EFB=,
在Rt△APH中,AP=2t,
∴PH=AP·sin∠PAH=,
在Rt△ECM中,CE=2,CM=,由勾股定理得:EM=,
在Rt△QNF中,QF=10-t-=,
∴QN=QF·sin∠EFB=()×=,
四边形为矩形,
∴PH=QN,
∴=,
解得:t=3;
(3)如图,过Q作QN⊥AF于N,
由(2)中知QN=,AH=AP·cos∠PAH=,
∴BH=GC=8-,
∴GM=GC+CM=,HF=HB+BF=,
∴
=
=
=,
∴S与t的函数关系式为:;
(4)存在,t=.
证明:如图,延长AC交EF于T,
∵AB=BF,BC=BF, ,
∴△ABC≌△EBF,
∴∠BAC=∠BEF,
∵∠EFB+∠BEF=90º,
∴∠BAC+∠EFB=90º,
∴∠ATE=90º即PT⊥EF,
要使点在的平分线上,只需PH=PT,
在Rt△ECM中,CE=2,sin∠BEF=,
CT=CE·sin∠BEF =,
PT=10+-2t=,又PH=,
=,
解得:t=.
【点睛】
本题属于四边形的综合题,考查了解直角三角形、锐角三角函数、垂直平分线、角平分线、矩形的性质、全等三角形的判定与性质、多边形的面积等知识、解答的关键是认真审题,分析相关知识,利用参数构建方程解决问题,是中考常考题型.
17.(潍坊市2020年)如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)在射线上存在点M,使得以点M,N,E为顶点的三角形与相似,点M的坐标为:,或.
【解析】
【分析】
(1)直接将和点代入,解出a,b的值即可得出答案;
(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG轴,交轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;
(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.
【详解】
(1)抛物线过点和点
抛物线解析式为:
(2)当时,
直线BC解析式为:
过点P作PG轴,交轴于点G,交BC于点F
设
即
(3)
为等腰直角三角形
抛物线的对称轴为
点E的横坐标为3
又点E在直线BC上
点E的纵坐标为5
设
①当MN=EM,,时
解得或(舍去)
此时点M的坐标为
②当ME=EN,时
解得:或(舍去)
此时点M的坐标为
③当MN=EN,时
连接CM,易知当N为C关于对称轴l的对称点时,,
此时四边形CMNE为正方形
解得:(舍去)
此时点M的坐标为
在射线上存在点M,使得以点M,N,E为顶点的三角形与相似,点M的坐标为:,或.
【点睛】
本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.
18、(2019 滨州)如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.
(1)求直线AD的函数解析式;
(2)如图②,若点P是直线AD上方抛物线上的一个动点
①当点P到直线AD的距离最大时,求点P的坐标和最大距离;
②当点P到直线AD的距离为时,求sin∠PAD的值.
【分析】(1)根据抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,可以求得点A、B、C的坐标,再根据将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D,可以求得点D的坐标.从而可以求得直线AD的函数解析式;
(2)①根据题意,作出合适的辅助线,然后根据二次函数的性质即可求得点P到直线AD的距离最大值,进而可以得到点P的坐标;
②根据①中关系式和题意,可以求得点P对应的坐标,从而可以求得sin∠PAD的值.
【解答】解:(1)当x=0时,y=4,则点A的坐标为(0,4),
当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),
∴OA=OB=4,
∴∠OBA=∠OAB=45°,
∵将直线AB绕点A逆时针旋转90°得到直线AD,
∴∠BAD=90°,
∴OAD=45°,
∴∠ODA=45°,
∴OA=OD,
∴点D的坐标为(4,0),
设直线AD的函数解析式为y=kx+b,
,得,
即直线AD的函数解析式为y=﹣x+4;
(2)作PN⊥x轴交直线AD于点N,如右图①所示,
设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),
∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,
∴PN⊥x轴,
∴PN∥y轴,
∴∠OAD=∠PNH=45°,
作PH⊥AD于点H,则∠PHN=90°,
∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,
∴当t=6时,PH取得最大值,此时点P的坐标为(6,),
即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;
②当点P到直线AD的距离为时,如右图②所示,
则t=,
解得,t1=2,t2=10,
则P1的坐标为(2,),P2的坐标为(10,﹣),
当P1的坐标为(2,),则P1A==,
∴sin∠P1AD==;
当P2的坐标为(10,﹣),则P2A==,
∴sin∠P2AD==;
由上可得,sin∠PAD的值是或.
【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用数形结合的思想解答.
19.(2019年山东省济南市)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数解析式及顶点G的坐标;
(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;
(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.
解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得
解得
∴抛物线C解析式为:y=﹣x2﹣4x,
配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);
(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.
∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1
∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x
将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,
∴直线l解析式为y=x﹣,
∵D(m,﹣m2﹣4m),
∴直线DO的解析式为y=﹣(m+4)x,
由抛物线C与抛物线C′关于原点对称,可得点D、E关于原点对称,
∴E(﹣m,m2+4m)
如图2,过点D作DH∥y轴交直线l于H,过E作EK∥y轴交直线l于K,
则H(m, m﹣),K(﹣m, m﹣),
∴DH=﹣m2﹣4m﹣(m﹣)=﹣m2m+,EK=m2+4m﹣(m﹣)=m2+m+,
∵DE=2EM
∴=,
∵DH∥y轴,EK∥y轴
∴DH∥EK
∴△MEK∽△MDH
∴==,即DH=3EK
∴﹣m2m+=3(m2+m+)
解得:m1=﹣3,m2=,
∵m<﹣2
∴m的值为:﹣3;
(3)由(2)知:m=﹣3,
∴D(﹣3,3),E(3,﹣3),OE=3,
如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20
∴AB2+BG2=AG2
∴△ABG是Rt△,∠ABG=90°,
∴tan∠GAB===,
∵∠DEP=∠GAB
∴tan∠DEP=tan∠GAB=,
在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,
过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;
∵E(3,﹣3),
∴∠EOT=45°
∵∠EOH=90°
∴∠HOT=45°
∴H(﹣1,﹣1),设直线EH解析式为y=px+q,
则,解得
∴直线EH解析式为y=﹣x,
解方程组,得,,
∴点P的横坐标为:或.
20、(2019 济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.
(1)求线段CE的长;
(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.
①写出y关于x的函数解析式,并求出y的最小值;
②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.
【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.
(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.
②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.
【解答】解:(1)如图1中,
∵四边形ABCD是矩形,
∴AD=BC=10,AB=CD=8,
∴∠B=∠BCD=90°,
由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.
在Rt△ABF中,BF==6,
∴CF=BC﹣BF=10﹣6=4,
在Rt△EFC中,则有:(8﹣x)2=x2+42,
∴x=3,
∴EC=3.
(2)①如图2中,
∵AD∥CG,
∴=,
∴=,
∴CG=6,
∴BG=BC+CG=16,
在Rt△ABG中,AG==8,
在Rt△DCG中,DG==10,
∵AD=DG=10,
∴∠DAG=∠AGD,
∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,
∴∠ADM=∠NMG,
∴△ADM∽△GMN,
∴=,
∴=,
∴y=x2﹣x+10.
当x=4时,y有最小值,最小值=2.
②存在.有两种情形:如图3﹣1中,当MN=MD时,
∵∠MDN=∠GMD,∠DMN=∠DGM,
∴△DMN∽△DGM,
∴=,
∵MN=DM,
∴DG=GM=10,
∴x=AM=8﹣10.
如图3﹣2中,当MN=DN时,作MH⊥DG于H.
∵MN=DN,
∴∠MDN=∠DMN,
∵∠DMN=∠DGM,
∴∠MDG=∠MGD,
∴MD=MG,
∵BH⊥DG,
∴DH=GH=5,
由△GHM∽△GBA,可得=,
∴=,
∴MG=,
∴x=AM=8﹣=.
综上所述,满足条件的x的值为8﹣10或.
【点评】本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
21、(2019 聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.
(1)求抛物线的表达式;
(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;
(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.
【分析】(1)将点A、B、C的坐标代入二次函数表达式,即可求解;
(2)只有当∠PEA=∠AOC时,PEA△∽AOC,可得:PE=4AE,设点P坐标(4k﹣2,k),即可求解;
(3)利用Rt△PFD∽Rt△BOC得:=PD2,再求出PD的最大值,即可求解.
【解答】解:(1)将点A、B、C的坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:y=﹣x2+2x+8;
(2)∵点A(﹣2,0)、C(0,8),∴OA=2,OC=8,
∵l⊥x轴,∴∠PEA=∠AOC=90°,
∵∠PAE≠∠CAO,
∴只有当∠PEA=∠AOC时,PEA△∽AOC,
此时,即:,
∴AE=4PE,
设点P的纵坐标为k,则PE=k,AE=4k,
∴OE=4k﹣2,
将点P坐标(4k﹣2,k)代入二次函数表达式并解得:
k=0或(舍去0),
则点P(,);
(3)在Rt△PFD中,∠PFD=∠COB=90°,
∵l∥y轴,∴∠PDF=∠COB,∴Rt△PFD∽Rt△BOC,
∴,
∴S△PDF=•S△BOC,
而S△BOC=OB•OC==16,BC==4,
∴S△PDF=•S△BOC=PD2,
即当PD取得最大值时,S△PDF最大,
将B、C坐标代入一次函数表达式并解得:
直线BC的表达式为:y=﹣2x+8,
设点P(m,﹣m2+2m+8),则点D(m,﹣2m+8),
则PD=﹣m2+2m+8+2m﹣8=﹣(m﹣2)2+4,
当m=2时,PD的最大值为4,
故当PD=4时,∴S△PDF=PD2=.
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
22、(2019年山东临沂T26)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A,B.
(1)求a,b满足的关系式及c的值;
(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;
(3)如图,当a=-1时,在抛物线上是否存在点P,使△PAB的面积为1,若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.
{解析}本题综合考查了二次函数y=ax2+bx+c(a≠0)的性质,用待定系数法确定函数的解析式,以及抛物线上几何图形的存在性问题.(1)根据直线y=x+2的解析式,先求得点A,B的坐标,进而可求c的值与a,b满足的关系式;(2)根据对称轴方程x=及二次函数的增减性易于得到a的取值范围;(3)利用抛物线上三角形面积的常见求法,即设P(x,-x2-x+2),过点P作与x轴的垂线,交直线y=x+2于点C,根据S△PAB=OA·PC判断点P是否存在,以及存在时求解点P的坐标.
{答案}解:(1)当x=0时,y=x+2=2,∴B(0,2);
当y=0时,x+2=0,x=-2,∴A(-2,0).
因为抛物线y=ax2+bx+c(a<0)经过点A,B,故把B(0,2)代入,得c=2;
把A(-2,0)代入,得4a-2b+2=0,
∴a,b满足的关系式为2a-b+1=0.
(2)由题意,得≥0,即≥0,
又∵a<0,∴a≥且a<0,即≤a<0.
(3)当a=-1时,2×(-1)-b+1=0,解得b=-1.∴y=-x2-x+2.
设P(x,-x2-x+2),过点P作与x轴的垂线,交直线y=x+2于点C,则C(x,x+2).
于是S△PAB=OA·PC=×2·|(-x2-x+2)-(x+2)|=1.
∴|-x2-2x|=1,∴x2+2x=1,或x2+2x=-1.
解得,x1=-1-,x2=-1+,x3=x4=-1.
当x=-1-时,y=-;
当x=-1+时,y=;
当x=-1时,y=2.
综上可知,在抛物线上存在点P,使△PAB的面积为1,此时点P的坐标为(-1-,-)或(-1+,)或(-1,2).
23、(2019年山东省日照市)如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.
(1)求抛物线解析式及B点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;
(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.
【分析】(1)由直线y=﹣5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.
(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,且对应的a值小于0,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.
(3)作点D坐标为(4,0),可得BD=1,进而有,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得等于相似比,进而得PD=AP,所以当C、P、D在同一直线上时,PC+PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.
【解答】解:(1)直线y=﹣5x+5,x=0时,y=5
∴C(0,5)
y=﹣5x+5=0时,解得:x=1
∴A(1,0)
∵抛物线y=x2+bx+c经过A,C两点
∴ 解得:
∴抛物线解析式为y=x2﹣6x+5
当y=x2﹣6x+5=0时,解得:x1=1,x2=5
∴B(5,0)
(2)如图1,过点M作MH⊥x轴于点H
∵A(1,0),B(5,0),C(0,5)
∴AB=5﹣1=4,OC=5
∴S△ABC=AB•OC=×4×5=10
∵点M为x轴下方抛物线上的点
∴设M(m,m2﹣6m+5)(1<m<5)
∴MH=|m2﹣6m+5|=﹣m2+6m﹣5
∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8
∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18
∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18
(3)如图2,在x轴上取点D(4,0),连接PD、CD
∴BD=5﹣4=1
∵AB=4,BP=2
∴
∵∠PBD=∠ABP
∴△PBD∽△ABP
∴
∴PD=AP
∴PC+PA=PC+PD
∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小
∵CD=
∴PC+PA的最小值为
24、(2019 威海)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.
(1)求证:CE=EF;
(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;
(3)求△BEF面积的最大值.
【解答】(1)证明:过E作MN∥AB,交AD于M,交BC于N,
∵四边形ABCD是正方形,
∴AD∥BC,AB⊥AD,
∴MN⊥AD,MN⊥BC,
∴∠AME=∠FNE=90°=∠NFE+∠FEN,
∵AE⊥EF,
∴∠AEF=∠AEM+∠FEN=90°,
∴∠AEM=∠NFE,
∵∠DBC=45°,∠BNE=90°,
∴BN=EN=AM,
∴△AEM≌△EFN(AAS),
∴AE=EF,
∵四边形ABCD是正方形,
∴AD=CD,∠ADE=∠CDE,
∵DE=DE,
∴△ADE≌△CDE(SAS),
∴AE=CE=EF;
(2)解:在Rt△BCD中,由勾股定理得:BD==10,
∴0≤x≤5,
由题意得:BE=2x,
∴BN=EN=x,
由(1)知:△AEM≌△EFN,
∴ME=FN,
∵AB=MN=10,
∴ME=FN=10﹣x,
∴BF=FN﹣BN=10﹣x﹣x=10﹣2x,
∴y===﹣2x2+5x(0≤x≤5);
(3)解:y=﹣2x2+5x=﹣2(x﹣)2+,
∵﹣2<0,
∴当x=时,y有最大值是;即△BEF面积的最大值是.
25、(2019年山东潍坊T25)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.
(1)求圆心M的坐标;
(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;
(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.
{解析}本题综合考查了在坐标系中解决抛物线和圆的有关问题.第(1)问因为点M是AC的中点,容易得出点M的坐标;第(2)问的关键在直线AD和圆相切,相切就有直径垂直于切线,根据相似三角形的知识可求出线段OD的长度,进而求出点D 点坐标;第(3)问中,抛物线的顶点是M,可以根据顶点式求出抛物线的解析式.设出P点坐标,再利用Rt△EHP∽Rt△DOA构建一元二次方程模型求解.
{答案}解:(1)∵AC是△ABO的中线,∴点C的坐标为(0,2).
∵∠AOC=90°,∴线段AC是⊙M的直径,
∴点M为线段AC的中点,
∴圆心M的坐标为(2,1).
(2)∵AD与⊙M相切于点A,
∴AC⊥AD,∴Rt△AOC∽Rt△DOA,
∴.
∵OA=4,∴OD=8.
∴点D的坐标为(0,-8).
设直线AD的函数表达式为y=kx+b,可得
∴k=2,b=-8.
∴直线AD的函数表达式为y=2x-8.
(3)设抛物线为y=a(x-2)2+1,且过点(0,4),
∴4=a(0-2)2+1,∴a=.
所以,抛物线的关系式为y=x2-3x +4.
设点P(m,m 2-3m+4),则点E(m,2m2-8),
∴PE=m 2-5m+12.
过点P作PH⊥EF,垂足为H,
∵PE∥y轴,∴Rt△EHP∽Rt△DOA,
∴.
∴EH=×(m 2-5m+12).
∵EF=4,
∴2=×(m 2-5m+12).
化简,得3m2-20m+28=0,
解之,得m1=2,m2=.
所以点P的坐标为(2,1)或(,).
26、(2019 枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.
(1)求抛物线的解析式和A,B两点的坐标;
(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;
(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.
【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为零,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),利用关系式S四边形PBOC=S△BOC+S△PBC得出关于x的二次函数,从而求得其最值;
(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),MN=|﹣++4﹣(﹣)|=|﹣+2m|,分当0<m<8时,或当m<0或m>8时来化简绝对值,从而求解.
【解答】解:(1)∵抛物线的对称轴是直线x=3,
∴﹣=3,解得a=﹣,
∴抛物线的解析式为:y=﹣x2+x+4.
当y=0时,﹣x2+x+4=0,解得x1=﹣2,x2=8,
∴点A的坐标为(﹣2,0),点B的坐标为(8,0).
答:抛物线的解析式为:y=﹣x2+x+4;点A的坐标为(﹣2,0),点B的坐标为(8,0).
(2)当x=0时,y=﹣x2+x+4=4,
∴点C的坐标为(0,4).
设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b得
,解得,
∴直线BC的解析式为y=﹣x+4.
假设存在点P,使四边形PBOC的面积最大,
设点P的坐标为(x,﹣x2+x+4),如图所示,过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),
则PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,
∴S四边形PBOC=S△BOC+S△PBC
=×8×4+PD•OB
=16+×8(﹣x2+2x)
=﹣x2+8x+16
=﹣(x﹣4)2+32
∴当x=4时,四边形PBOC的面积最大,最大值是32
∵0<x<8,
∴存在点P(4,6),使得四边形PBOC的面积最大.
答:存在点P,使四边形PBOC的面积最大;点P的坐标为(4,6),四边形PBOC面积的最大值为32.
(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),
∴MN=|﹣++4﹣(﹣)|=|﹣+2m|,
又∵MN=3,
∴|﹣+2m|=3,
当0<m<8时,﹣+2m﹣3=0,解得m1=2,m2=6,
∴点M的坐标为(2,6)或(6,4);
当m<0或m>8时,﹣+2m+3=0,解得m3=4﹣2,m4=4+2,
∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).
答:点M的坐标为(2,6)、(6,4)、(4﹣2,﹣1)或(4+2,﹣﹣1).
【点评】本题属于二次函数压轴题,综合考查了待定系数法求解析式,解析法求面积及点的坐标的存在性,最大值等问题,难度较大.
27、(2019年 淄博市)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求这条抛物线对应的函数表达式;
(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.
【解答】解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)
∴ 解得:
∴这条抛物线对应的函数表达式为y=﹣x2+2x+3
(2)在y轴上存在点P,使得△PAM为直角三角形.
∵y=﹣x2+2x+3=﹣(x﹣1)2+4
∴顶点M(1,4)
∴AM2=(3﹣1)2+42=20
设点P坐标为(0,p)
∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2
①若∠PAM=90°,则AM2+AP2=MP2
∴20+9+p2=17﹣8p+p2
解得:p=﹣
∴P(0,﹣)
②若∠APM=90°,则AP2+MP2=AM2
∴9+p2+17﹣8p+p2=20
解得:p1=1,p2=3
∴P(0,1)或(0,3)
③若∠AMP=90°,则AM2+MP2=AP2
∴20+17﹣8p+p2=9+p2
解得:p=
∴P(0,)
综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△PAM为直角三角形.
(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H
∵DG⊥x轴于点G
∴∠HGE=∠IEG=∠IHG=90°
∴四边形IEGH是矩形
∵点I为△ADG的内心
∴IE=IF=IH,AE=AF,DF=DH,EG=HG
∴矩形IEGH是正方形
设点I坐标为(m,n)
∴OE=m,HG=GE=IE=n
∴AF=AE=OA﹣OE=3﹣m
∴AG=GE+AE=n+3﹣m
∵DA=OA=3
∴DH=DF=DA﹣AF=3﹣(3﹣m)=m
∴DG=DH+HG=m+n
∵DG2+AG2=DA2
∴(m+n)2+(n+3﹣m)2=32
∴化简得:m2﹣3m+n2+3n=0
配方得:(m﹣)2+(n+)2=
∴点I(m,n)与定点Q(,﹣)的距离为
∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动
∴当点I在线段CQ上时,CI最小
∵CQ=
∴CI=CQ﹣IQ=
∴CI最小值为.
相关试卷
这是一份2020年中考数学真题分项汇编专题12二次函数压轴解答题 (含解析),共107页。试卷主要包含了三点,综合与探究等内容,欢迎下载使用。
这是一份专题14 二次函数解答题-三年(2020-2022)中考数学真题分项汇编(湖北专用),文件包含专题14二次函数解答题解析版docx、专题14二次函数解答题原卷版docx等2份试卷配套教学资源,其中试卷共174页, 欢迎下载使用。
这是一份初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期),共169页。试卷主要包含了解答题等内容,欢迎下载使用。