![2022年中考数学二轮专题《四边形》解答题专项练习08(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12933810/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学二轮专题《四边形》解答题专项练习08(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12933810/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年中考数学二轮专题《四边形》解答题专项练习08(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12933810/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年中考数学二轮专题《四边形》解答题专项练习(含答案)
2022年中考数学二轮专题《四边形》解答题专项练习08(含答案)
展开这是一份2022年中考数学二轮专题《四边形》解答题专项练习08(含答案),共7页。
2022年中考数学二轮专题
《四边形》解答题专项练习08
1.如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.
(1)求证:四边形CDBF是平行四边形;
(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.
2.如图,已知在□ABCD中,E、F是对角线AC上的两点,且AE=CF.
求证:四边形BEDF是平行四边形.
3.如图,已知点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.
求证:(1)EF=FP=PQ=QE;
(2)四边形EFPQ是正方形.
4.已知:在正方形ABCD中,点G是BC边上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F. 求证:
(1)△ADE≌△BAF;
(2)AF=BF+EF.
5.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.
(1)求证:AD=EC;
(2)求证:四边形ADCE是菱形;
(3)若AB=AO,求OD:OA的值.
6.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积.
7.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
8.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.
0.答案解析
1. (1)证明:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED.
∴CF=BD.
∴四边形CDBF是平行四边形.
(2)解:如图,作EM⊥DB于点M,
∵四边形CDBF是平行四边形,BC=,
∴,DF=2DE.
在Rt△EMB中,EM=2,
在Rt△EMD中,∵∠EDM=30°,
∴DE=2EM=4,
∴DF=2DE=8.
2.证明:连结BD,与AC交于点O,如图所示:
∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,
又∵AE=CF,∴AO﹣AE=CO﹣CF,∴EO=FO,
∴四边形BEDF为平行四边形.
3.证明:(1)∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,
∵AF=BP=CQ=DE,
∴DF=CE=BQ=AP,
在△APF和△DFE和△CEQ和△BQP中,
,
∴△APF≌△DFE≌△CEQ≌△BQP(SAS),
∴EF=FP=PQ=QE;
(2)∵EF=FP=PQ=QE,
∴四边形EFPQ是菱形,
∵△APF≌△BQP,
∴∠AFP=∠BPQ,
∵∠AFP+∠APF=90°,
∴∠APF+∠BPQ=90°,
∴∠FPQ=90°,
∴四边形EFPQ是正方形.
4.解:(1)由正方形的性质可知:AD=AB,
∵∠BAF+∠ABF=∠BAF+∠DAE=90°,
∴∠ABF=∠DAE,
在△ADE与△BAF中,
∴△ADE≌△BAF(AAS)
(2)由(1)可知:BF=AE,
∴AF=AE+EF=BF+EF
5.解:
(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,
∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,.Com]
又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;
(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,
∴平行四边形ADCE为菱形;
(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,
∴点O为AC的中点,
∵AD是边BC上的中线,∴点D为BC边中点,
∴OD为△ABC的中位线,
∵AB=AO,∴AO=2OD,即OD:OA的值为1:2.
6.(1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;
理由如下:由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC===5,
△ACE的面积=AE×EC=×3×4=6,
∵122+52=132,即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=AB•AC=×12×5=30.
7.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,
∵BD=,∴AB=1,∴正方形ABCD的边长为1;
(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,
∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,
,∴△ABF≌△CBN(AAS),∴AF=CN,
∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,
∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,
∴△ABF∽△COM,∴=,∴==,即CN=CM.
8.解:(1)△AED≌△CEB′
证明:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°,
又∵∠B′EC=∠DEA,
∴△AED≌△CEB′;
(2)由折叠的性质可知,∠EAC=∠CAB,
∵CD∥AB,
∴∠CAB=∠ECA,
∴∠EAC=∠ECA,
∴AE=EC=8﹣3=5.在△ADE中,AD=4,
延长HP交AB于M,则PM⊥AB,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD=4.
相关试卷
这是一份2022年中考数学二轮专题《四边形》解答题专项练习10(含答案),共7页。试卷主要包含了5AC,AD=CD,,5,0);N;等内容,欢迎下载使用。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习09(含答案),共8页。
这是一份2022年中考数学二轮专题《四边形》解答题专项练习07(含答案),共8页。