![专题19 抛物线及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案01](http://img-preview.51jiaoxi.com/3/3/12849819/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题19 抛物线及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案01](http://img-preview.51jiaoxi.com/3/3/12849819/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 专题18 双曲线的简单几何性质(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案 学案 0 次下载
- 专题19 抛物线及其标准方程(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题20 抛物线的简单几何性质(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
- 专题20 抛物线的简单几何性质(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案 学案 0 次下载
- 专题21 第三章 复习与检测(核心素养练习)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册) 试卷 0 次下载
专题19 抛物线及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案
展开专题十九 抛物线及其标准方程
一 知识结构图
内 容 | 考点 | 关注点 |
抛物线及其标准方程
| 抛物线的定义 | 抛物线上的点到焦点与准线距离的转变 |
抛物线的方程 | 求方程 |
二.学法指导
1.焦点在x轴上的抛物线,其标准方程可以统设为y2=mx(m≠0),此时焦点为F,准线方程为x=-;焦点在y轴上的抛物线,其标准方程可以统设为x2=my(m≠0),此时焦点为F,准线方程为y=-.
2.设M是抛物线上一点,焦点为F,则线段MF叫做抛物线的焦半径.若M(x0,y0)在抛物线y2=2px(p>0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF|=x0+.
3.建立坐标系求抛物线的标准方程的方法:以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单.
三.知识点贯通
知识点1 求抛物线的标准方程
图形 | 标准方程 | 焦点坐标 | 准线方程 |
y2=2px(p>0) | F | x=- | |
y2=-2px(p>0) | F | x= | |
x2=2py(p>0) | F | y=- | |
x2=-2py(p>0) | F | y= |
例题1.分别求满足下列条件的抛物线的标准方程.
(1)过点(3,-4);(2)焦点在直线x+3y+15=0上.
【解析】 (1)∵点(3,-4)在第四象限,∴抛物线开口向右或向下,
设抛物线的标准方程为y2=2px(p>0)或x2=-2p1y(p1>0).
把点(3,-4)的坐标分别代入y2=2px和x2=-2p1y中,得(-4)2=2p·3,32=-2p1·(-4),即2p=,2p1=.
∴所求抛物线的标准方程为y2=x或x2=-y.
(2)令x=0得y=-5;令y=0得x=-15.
∴抛物线的焦点为(0,-5)或(-15,0).
∴所求抛物线的标准方程为x2=-20y或y2=-60x.
知识点二 抛物线定义的应用
1.抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
例题2:若位于y轴右侧的动点M到F的距离比它到y轴的距离大.求点M的轨迹方程.
【解析】 由于位于y轴右侧的动点M到F的距离比它到y轴的距离大,
所以动点M到F的距离与它到直线l:x=-的距离相等.
由抛物线的定义知动点M的轨迹是以F为焦点,l为准线的抛物线(不包含原点),
其方程应为y2=2px(p>0)的形式,
而=,所以p=1,2p=2,
故点M的轨迹方程为y2=2x(x≠0).
知识点三 抛物线的实际应用
抛物线定义的两种应用
(1)实现距离转化.根据抛物线的定义,抛物线上任意一点到焦点的距离等于它到准线的距离,因此,由抛物线定义可以实现点点距与点线距的相互转化,从而简化某些问题.
(2)解决最值问题.在抛物线中求解与焦点有关的两点间距离和的最小值时,往往用抛物线的定义进行转化,即化折线为直线解决最值问题.
例题3 .河上有抛物线型拱桥,当水面距拱顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
【解析】 如图,建立坐标系,设拱桥抛物线方程为x2=-2py(p>0),由题意,将B(4,-5)代入方程得p=,∴抛物线方程为x2=-y.
∵当船的两侧和拱桥接触时船不能通航.
设此时船面宽为AA′,则A(2,yA),
由22=-yA,得yA=-.
又知船露出水面上部分为米,设水面与抛物线拱顶相距为h,则h=|yA|+=2(米),即水面上涨到距抛物线拱顶2米时,小船不能通航.
五 易错点分析
易错一 抛物线上的点到焦点的距离与到准线距离的转化
例题4.抛物线y2=2x,F为焦点,点A(3,2),点M为抛物线上一点,求|MA|+|MF|的最小值,并求出点M的坐标.
【解析】如图,由于点M在抛物线上,所以|MF|等于点M到其准线l的距离|MN|,于是|MA|+|MF|=|MA|+|MN|≥|AN|=3+=.当A,M,N三点共线时,|MA|+|MN|取最小值,亦即|MA|+|MF|取最小值,这时M的纵坐标为2.可设M(x0,2),代入抛物线方程得x0=2,即M(2,2)。
误区警示
抛物线上的点到焦点的距离与到准线距离的相等。
专题16 椭圆的简单几何性质(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案: 这是一份专题16 椭圆的简单几何性质(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案,文件包含专题16椭圆的简单几何性质知识精讲解析版docx、专题16椭圆的简单几何性质知识精讲原卷版docx等2份学案配套教学资源,其中学案共13页, 欢迎下载使用。
专题15 椭圆及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案: 这是一份专题15 椭圆及其标准方程(知识精讲)-【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案,文件包含专题15椭圆及其标准方程知识精讲解析版docx、专题15椭圆及其标准方程知识精讲原卷版docx等2份学案配套教学资源,其中学案共6页, 欢迎下载使用。
专题13 圆与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案: 这是一份专题13 圆与圆的位置关系 知识精讲 -【新教材精创】2020-2021学年高二数学新教材知识讲学(人教A版选择性必修第一册)学案,文件包含专题13圆与圆的位置关系知识精讲解析版docx、专题13圆与圆的位置关系知识精讲原卷版docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。