终身会员
搜索
    上传资料 赚现金
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (全国通用)备战2022年中考数学一轮复习专题 第二十二讲 相似三角形(讲义)(原卷版).doc
    • 解析
      (全国通用)备战2022年中考数学一轮复习专题 第二十二讲 相似三角形(讲义)(解析版).doc
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案01
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案02
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案03
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案01
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案02
    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案

    展开
    这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案,文件包含全国通用备战2022年中考数学一轮复习专题第二十二讲相似三角形讲义解析版doc、全国通用备战2022年中考数学一轮复习专题第二十二讲相似三角形讲义原卷版doc等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    备战2022年中考数学一轮复习专题讲义+强化训练(全国通用)
    第二十二讲 相似三角形
    必备知识点 2
    考点一 平行线分线段成比例定理 3
    考点二 相似三角形的性质与判定 7
    考点三 相似三角形的应用 16
    考点四 图形的位似 18















    知识导航


    必备知识点
    一、比例的相关概念及性质
    1.线段的比:两条线段的比是两条线段的长度之比.
    2.比例中项:如果=,即b2=ac,我们就把b叫做a,c的比例中项.
    3.比例的性质
    性质
    内容
    性质1
    =⇔ad=bc(a,b,c,d≠0).
    性质2
    如果=,那么.
    性质3
    如果==…=(b+d+…+n≠0),则=(不唯一).
    4.黄金分割:如果点C把线段AB分成两条线段,使,那么点C叫做线段AC的黄金分割点,AC是BC与AB的比例中项,AC与AB的比叫做黄金比.
    二、相似三角形的判定及性质
    1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.
    2.性质:1)相似三角形的对应角相等;2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
    3)相似三角形的周长比等于相似比,面积比等于相似比的平方.
    3.判定:1)有两角对应相等,两三角形相似;2)两边对应成比例且夹角相等,两三角形相似;3)三边对应成比例,两三角形相似;4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.
    【方法技巧】判定三角形相似的几条思路:
    1)条件中若有平行线,可采用相似三角形的判定(1);
    2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];
    3)条件中若有两边对应成比例,可找夹角相等;
    4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;
    5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.
    三、相似多边形
    1.定义:对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.
    2.性质:1)相似多边形的对应边成比例;2)相似多边形的对应角相等;3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.
    四、位似图形
    1.定义:如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.
    2.性质:1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或–k;2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.
    3.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.
    4.画位似图形的步骤:1)确定位似中心;2)确定原图形的关键点;3)确定位似比,即要将图形放大或缩小的倍数;4)作出原图形中各关键点的对应点;5)按原图形的连接顺序连接所作的各个对应点..




    考点一 平行线分线段成比例定理

    1.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,DE=1.2,BC=2,则EF的长为(  )

    A.2.4 B.3.6 C.4 D.0.6
    【解答】解:∵AD∥BE∥CF,
    ∴=,
    ∵AB=1,DE=1.2,BC=2,
    ∴=,
    解得:EF=2.4,
    故选:A.
    2.等腰△ABC中,AB=AC,E、F分别是AB、AC上的点,且BE=AF,连接CE、BF交于点P,若=,则的值为(  )

    A. B. C. D.
    【解答】解:作ED∥AC交BF于D,如图,
    ∵ED∥FC,
    ∴==,
    设ED=4x,BE=y,则FC=3x,AF=y,
    ∵AB=AC,
    ∴AE=FC=3x,
    ∵DE∥AF,
    ∴=,即=,
    整理得y2﹣4xy﹣12x2=0,
    ∴(y+2x)(y﹣6x)=0,
    ∴y=6x,
    ∴==.
    故选:A.

    3.如图,AD是△ABC的边BC上的中线,点E是AD的中点,连接BE并延长交AC于点F,则AF:FC=(  )

    A.1:2 B.1:3 C.1:4 D.2:5
    【解答】解:作DH∥AC交BF于H,如图,

    ∵DH∥AF,
    ∴∠EDH=∠EAF,∠EHD=∠EFA,
    ∵DE=AE,
    ∴△EDH≌△EAF(AAS),
    ∴DH=AF,
    ∵点D为BC的中点,DH∥CF,
    ∴DH为△BCF的中位线,
    ∴CF=2DH=2AF,
    ∴AF:FC=1:2,
    故选:A.
    4.在梯形ABCD中,AB∥CD,AB=3CD,E是对角线AC的中点,直线BE交AD于点F,则AF:FD=(  )

    A.2:1 B.1:2 C.2:3 D.3:2
    【解答】解:延长BF交CD的延长线与点G,连接AG,如图,
    ∵AB∥CD,E是对角线AC的中点,
    ∴四边形ABCG是平行四边形,
    ∴GC=AB,
    又AB=3CD,
    ∴GD=2CD,
    ∴==,
    故选:D.

    5.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是(  )

    A.8 B.12 C. D.15
    【解答】解:∵正方形ABCD的边长为2,E,F分别是AB,BC的中点,
    ∴AD=AB=2,AE=BF=,
    ∴DE=AF==5,
    在△ADE和△BAF中

    ∴△ADE≌△BAF(SAS),
    ∴∠ADE=∠BAF,
    而∠BAF+∠DAM=90°,
    ∴∠ADM+∠DAM=90°,
    ∴AM•DE=AE•AD,即AM×5=×2,
    ∴AM=2,
    ∴DM==4,
    ∵AD∥CB,
    ∴AN:NF=AD:BF=2:1,
    ∴AN=AF=,
    ∴S△DMN=S△AND﹣S△AMD=×4×﹣×4×2=8.
    故选:A.

    考点二 相似三角形的性质与判定

    6.如图,在△ABC中,D是BC的中点,过D的直线交AC于E,交AB的延长线于F,AB=mAF,AC=nAE.求:
    (1)m+n的值;
    (2)的取值范围.

    【解答】解:(1)过点B作BG∥AC交EF于G,

    ∴∠C=∠GBD,
    ∵D是BC的中点,
    ∴DC=BD,
    ∵∠CDE=∠BDG,
    ∴△DCE≌△DBG(ASA),
    ∴EC=BG,
    ∵=m,即=m,
    ∴1﹣m=,
    ∵=n,即=n,
    ∴n﹣1==,
    ∵BG∥AC,
    ∴△FBG∽△FAE,
    ∴,
    ∴1﹣m=n﹣1,
    ∴m+n=2.
    (2)∵==﹣1,
    ∵点F在AB的延长线上,
    ∴AF>AB,
    ∴0<m<1,1<m+1<2,<得,
    <﹣1<2,
    ∴<<2.
    7.如图,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中点,连EF交AD于点G.
    (1)求证:AD2=AB•AE;
    (2)若AB=3,AE=2,求的值.

    【解答】(1)证明:∵AD⊥BC于D,作DE⊥AC于E,
    ∴∠ADC=∠AED=90°,
    ∵∠DAE=∠DAC,
    ∴△DAE∽△CAD,
    ∴=,
    ∴AD2=AC•AE,
    ∵AC=AB,
    ∴AD2=AB•AE.
    解法二:可以直接证明△DAE∽△BAD,得出结论.
    (2)解:如图,连接DF.

    ∵AB=3,∠ADB=90°,BF=AF,
    ∴DF=AB=,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC,
    ∴DF∥AC,
    ∴===,
    ∴=.
    8.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
    (1)如图1,当∠ABC=45°时,求证:AD=DE;
    (2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.

    【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,
    则∠BDE+∠FDE=90°,
    ∵DE⊥AD,
    ∴∠FDE+∠ADF=90°,
    ∴∠BDE=∠ADF,
    ∵∠BAC=90°,∠ABC=45°,
    ∴∠C=45°,
    ∵MN∥AC,
    ∴∠EBD=180°﹣∠C=135°,
    ∵∠BFD=45°,DF⊥BC,
    ∴∠BFD=45°,BD=DF,
    ∴∠AFD=135°,
    ∴∠EBD=∠AFD,
    在△BDE和△FDA中

    ∴△BDE≌△FDA(ASA),
    ∴AD=DE;

    (2)解:DE=AD,
    理由:如图2,过点D作DG⊥BC,交AB于点G,
    则∠BDE+∠GDE=90°,
    ∵DE⊥AD,
    ∴∠GDE+∠ADG=90°,
    ∴∠BDE=∠ADG,
    ∵∠BAC=90°,∠ABC=30°,
    ∴∠C=60°,
    ∵MN∥AC,
    ∴∠EBD=180°﹣∠C=120°,
    ∵∠ABC=30°,DG⊥BC,
    ∴∠BGD=60°,
    ∴∠AGD=120°,
    ∴∠EBD=∠AGD,
    ∴△BDE∽△GDA,
    ∴=,
    在Rt△BDG中,=tan30°=,
    ∴DE=AD.


    9.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系.
    (1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
    (2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
    (3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明.

    【解答】解:(1)AE=EF;
    证明:如图1,过点E作EH∥AB交AC于点H.
    则∠BAC+∠AHE=180°,∠BAC=∠CHE,
    ∵AB=BC=AC,
    ∴∠BAC=∠ACB=60°,
    ∴∠CHE=∠ACB=∠B=60°,
    ∴EH=EC.
    ∵AD∥BC,
    ∴∠FCE=180°﹣∠D=120°,
    又∵∠AHE=180°﹣∠BAC=120°,
    ∴∠AHE=∠FCE,
    ∵∠AOE=∠COF,∠AEF=∠ACF,
    ∴∠EAC=∠EFC,
    在△AEH和△FEC中,
    ∵,
    ∴△AEH≌△FEC,
    ∴AE=EF;


    (2)猜想:(1)中的结论是没有发生变化.
    证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,
    ∵AB=BC,
    ∴∠BAC=∠ACB
    ∴∠CHE=∠ACB,
    ∴EH=EC
    ∵AD∥BC,
    ∴∠D+∠DCB=180°.
    ∵∠BAC=∠D,
    ∴∠AHE=∠DCB=∠ECF
    ∵∠AOE=∠COF,∠AEF=∠ACF,
    ∴∠EAC=∠EFC,
    ∴△AEH≌△FEC,
    ∴AE=EF;

    (3)猜想:(1)中的结论发生变化.
    证明:如图3,过点E作EH∥AB交AC于点H.
    由(2)可得∠EAC=∠EFC,
    ∵AD∥BC,∠BAC=∠D,
    ∴∠AHE=∠DCB=∠ECF,
    ∴△AEH∽△FEC,
    ∴AE:EF=EH:EC,
    ∵EH∥AB,
    ∴△ABC∽△HEC,
    ∴EH:EC=AB:BC=k,
    ∴AE:EF=k,
    ∴AE=kEF.

    10.如图,M是正方形ABCD边AD上动点、以BM为对角线作正方形BGMN.
    (1)当点M与A重合时,直接写出△BNC与△BMD之间的面积关系.
    (2)当点M不与A重合时,猜想△BNC与△BMD之间的面积关系,并证明你的猜想.
    (3)当点M在运动时,是否有一点使S正方形BGMN=4S△BNC成立?若成立,请求出∠ABM的大小;若不成立,请说明理由.

    【解答】解:(1)=;

    (2)猜想=;
    证明:∵BM,BD都是正方形的角平分线,
    ∴∠MBN=∠DBC=45°,
    ∴∠MBD+∠DBN=45°,∠DBN+NBC=45°,
    ∴∠MBD=∠DBN,
    ∵=,=,
    ∴=,
    ∴△BNC∽△BMD,
    ∴=()2=;

    (3)连接DN,
    当S正方形BGMN=4S△BNC,
    ∵=;
    ∴可得S△BMN=S△BMD,
    ∴BM∥DN,
    ∴∠MBD=∠BDN,
    ∵△BNC∽△BMD,
    ∴∠BCN=∠MDB=45°,
    ∵NC=NC,BC=DC,

    ∴△BNC≌△DNC,(SAS)
    ∴BN=DN,
    ∴∠NBD=∠BDN,
    ∴∠MBD=∠BDN=∠NBD=22.5°,
    ∠ABM=22.5°.







    考点三 相似三角形的应用

    11.如图,昌昌同学和同伴秋游时,发现在某地小山坡的点E处有一棵小树,他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE的长度),昌昌站在点B处,让同伴移动平面镜至点C处,此时昌昌在平面镜内可以看到点E.且测得BC=3米,CD=28米.∠CDE=150°.已知昌昌的眼睛到地面的距离AB=1.5米,请根据以上数据,求DE的长度.(结果保留根号)

    【解答】解:过E作EF⊥BC于F,
    ∵∠CDE=150°,
    ∴∠EDF=30°,
    设EF为x米,DF=x米,DE=2x米,
    ∵∠B=∠EFC=90°,
    ∵∠ACB=∠ECD,
    ∴△ABC∽△EFC,
    ∴=,
    即=,
    解得:x=,
    ∴DE=(28+28)米,
    答:DE的长度为(28+28)米.

    12.某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?

    【解答】解:∵BC∥DE,
    ∴△ABC∽△ADE,
    ∴=,
    即=,
    ∴AB=30.
    答:河的宽度AB为30米.
    13.为了测量水平地面上一栋建筑物AB的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:先在水平地面上放置一面平面镜,并在镜面上做标记点C,后退至点D处恰好看到建筑物AB的顶端A在镜子中的像与镜面上的标记点C重合,法线是FC,小军的眼睛与地面距离DE是1.65m,BC、CD的长分别为60m、3m,求建筑物AB的高度.

    【解答】解:根据题意,易得∠ABC=∠EDC=90°,∠ACB=∠ECD,
    则△ABC∽△EDC,
    所以=,即=,
    解得:AB=33,
    答:建筑物AB的高度为33m.



    考点四 图形的位似

    14.如图,线段AB的两个端点坐标分别为A(2,2),B(4,2).以原点O为位似中心,将线段AB缩小后得到线段DE,若DE=1,则端点D的坐标为  (1,1) .

    【解答】解:∵A(2,2),B(4,2),
    ∴AB=2,
    ∵DE=1,
    ∴=,
    ∵以原点O为位似中心,将线段AB缩小后得到线段DE,
    ∴线段AB与线段DE的相似比为2:1,
    ∵点A的坐标为(2,2),
    ∴点D的坐标为(1,1),
    故答案为:(1,1).
    15.在平面直角坐标系中,△ABC的顶点A的坐标为(6,4),以原点O为位似中心,把△ABC缩小为原来的,得到△A′B'C′,则点A的对应点A′的坐标为  (3,2)或(﹣3,﹣2) .
    【解答】解:∵以原点O为位似中心,把△ABC缩小为原来的,得到△A′B'C′,点A的坐标为(6,4),
    ∴点A的对应点A′的坐标为(6×,4×)或(6×(﹣),4×(﹣)),即(3,2)或(﹣3,﹣2),
    故答案为:(3,2)或(﹣3,﹣2).
    16.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(5,1),B1(10,2),若△ABC的面积为m,则△A′B′C′的面积为  4m .

    【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,点B(5,1),B1(10,2),
    ∴△ABC与△A′B′C′的相似比为1:2,
    ∴△ABC与△A′B′C′的面积比为1:4,
    ∵△ABC的面积为m,
    ∴△A′B′C′的面积为4m,
    故答案为:4m.
    17.如图,四边形EFGH与四边形ABCD关于点O位似,且OE=2AE,则四边形EFGH与四边形ABCD的面积比为  4:9 .

    【解答】解:∵OE=2AE,
    ∴OE:OA=2:3,
    ∵四边形EFGH与四边形ABCD关于点O位似,
    ∴HE∥AD,
    ∴△OHE∽△ODA,
    ∴HE:AD=OE:OA=2:3,
    ∴四边形EFGH与四边形ABCD的面积比为4:9,
    故答案为:4:9.


    相关学案

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第十讲 一次函数的应用(讲义)学案: 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第十讲 一次函数的应用(讲义)学案,文件包含全国通用备战2022年中考数学一轮复习专题第十讲一次函数的应用讲义解析版doc、全国通用备战2022年中考数学一轮复习专题第十讲一次函数的应用讲义原卷版doc等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第六讲 分式方程(讲义)学案: 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第六讲 分式方程(讲义)学案,文件包含全国通用备战2022年中考数学一轮复习专题第六讲分式方程讲义解析版doc、全国通用备战2022年中考数学一轮复习专题第六讲分式方程讲义原卷版doc等2份学案配套教学资源,其中学案共24页, 欢迎下载使用。

    (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(讲义)学案: 这是一份(全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十五讲 视图与投影(讲义)学案,文件包含全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影讲义解析版doc、全国通用备战2022年中考数学一轮复习专题第二十五讲视图与投影讲义原卷版doc等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (全国通用)备战中考数学一轮复习专题讲义+强化训练 第二十二讲 相似三角形(讲义)学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map