|试卷下载
终身会员
搜索
    上传资料 赚现金
    (通用版)中考数学一轮复习卷:分式方程(含解析)
    立即下载
    加入资料篮
    (通用版)中考数学一轮复习卷:分式方程(含解析)01
    (通用版)中考数学一轮复习卷:分式方程(含解析)02
    (通用版)中考数学一轮复习卷:分式方程(含解析)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (通用版)中考数学一轮复习卷:分式方程(含解析)

    展开
    这是一份(通用版)中考数学一轮复习卷:分式方程(含解析),共14页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    分式方程

    一、选择题

    1.方程 的解为(   .

    A. x=-1   B. x=0   C. x=    D. x=1

    2.解分式方程 分以下几步,其中错误的一步是(

    A. 方程两边分式的最简公分母是(x1)(x1    B. 方程两边都乘以(x1)(x1),得整式方程2x1)+3x1)=6
    C. 解这个整式方程,得x1   D. 原方程的解为x1

    3.方程 的解的个数为(

    A. 0      B. 1      C. 2      D. 3

    4.“绿水青山就是金山银山.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是(  

    A.      B. 
    C.     D. 

    5.若关于x的分式方程 = 的根为正数,k的取值范围是(   )

    A. k<- k≠-1     B. k≠-1     C. - <k<1     D. k<-

    6.若方程 =1有增根,则它的增根是(  

    A. 0      B. 1      C. 1      D. 11

    7.已知 = - ,其中A,B为常数,4A-B的值为(   )

    A. 13       B. 9       C. 7       D. 5

    8.为响应绿色校园的号召,八年级(5)班全体师生义务植树300棵.原计划每小时植树 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是(  

    A.
    B.
    C.
    D.

    9.关于x的分式方程 的解为正实数,则实数m的取值范围是(

    A. m<-6m≠2     B. m6m≠2     C. m<6m≠-2     D. m<6m≠2

    10.在今年抗震赈灾活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多 ;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得(   

    A.     B. 
    C.     D. 

    11.己知关于x的分式方程 =1的解是非正数,则a的取值范围是( 

    A. a≤l   B. a≤2   C. a≤1a≠2   D. a≤1a≠2

    12.AB两地相距180km,新修的高速公路开通后,在AB两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为(  

    A.  =1     B.  =1
    C.  =1     D.  =1

    二、填空题

    13.方程 的解是________

    14.x=________, 互为相反数.

    15.若分式方程 有增根,则这个增根是________

    16.已知关于x的方程x+ =a+ 的解是x1=ax2= ,应用此结论可以得到方程x+ =[x]+ 的非整数解为________[x]表示不大于x的最大整数).

    17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设 米,根据题意可列出方程:________

    18.若关于x的分式方程 =2的解为负数,则k的取值范围为________

    19. ________,解分式方程 会出现增根.

    20.已知a>b>0, ,则 ________

    21.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________

    22.新定义:[a  b]为一次函数yaxb(a≠0a  b为实数)关联数.若关联数”[1m3]的一次函数是正比例函数,则关于x的方程 的解为________ 

    三、计算题

    23.解方程: 1.

     

     

    24.解方程:

     

     

    四、解答题

    25.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350kmAB车的平均速度之比为107A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?

     

     

    26.刘阿姨到超市购买大米,第一次按原价购买,用了 .几天后,遇上这种大米 折出售,她用 元又买了一些,两次一共购买了 kg.这种大米的原价是多少?

     

    27.某公司购买了一批AB型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.

    1)求该公司购买的AB型芯片的单价各是多少元?

    2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?


    答案解析

    一、选择题

    1.【答案】D 

    【解析】 :方程两边同时乘以2xx+3)得
    X+3=4x
    解之:x=1
    经检验:x=1是原方程的根。
    【分析】将方程两边同时乘以2xx+3),将分式方程转化为整式方程,解方程,检验即可求解。

    2.【答案】D 

    【解析】 方程无解,虽然化简求得 ,但是将 代入原方程中,可发现 的分母都为零,即无意义,所以 ,即方程无解
    【分析】因为分式方程在化为整式方程的过程中,未知数的取值范围扩大了,所以会产生增根,因此分式方程要验根。增根是使分母为0的未知数的值。

    3.【答案】D 

    【解析】 :
    方程两边同时乘以(x+1)x-1)得:
    x-32x+1+x-3=0
    x-3)(x2-2x-2=0
    x-3=0x2-2x-2=0
    解之:x1=3x2=1+x3=1-
    经检验,它们都是原方程的根。
    3个解
    故答案为:D
    【分析】将分子分母能分解因式的先分解因式,再去分母,将分式方程转化为整式方程,求出方程的解,检验即可得出结果。易错:方程两边不能同时除以(x-3.

    4.【答案】C 

    【解析】 :设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为 万平方米,
    依题意得: ,即
    故答案为:C
    【分析】设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,原计划的工作时间为:天,实际的工作时间为:天,根据实际比计划提前30天完成了这一任务,列出方程即可。

    5.【答案】A 

    【解析】 :方程两边同时乘以(x+k)(x-1)得:
    x-1=5x+5k
    解之:x=
    x0x≠1x≠k
    0≠1≠k
    解之:kk≠-1k≠
    kk≠-1
    故答案为:A
    【分析】先去分母求出分式方程的解。再根据此方程的解为正数,列出关于k的不等式,注意此方程有解,则x≠1x≠k,求出k的取值范围即可。

    6.【答案】B 

    【解析 方程两边都乘(x+1)(x1),得
    6mx+1=x+1)(x1),
    由最简公分母(x+1)(x1=0,可知增根可能是x=11
    x=1时,m=3
    x=1时,得到6=0,这是不可能的,
    所以增根只能是x=1
    故答案为:B
    【分析】将分式方程去分母得6mx+1=x+1)(x1),因为方程有增根,所以(x+1)(x1=0,解得x=11,当x=1时,m=3;当x=1时,得到6=0,不符合实际意义,所以增根是x=1

    7.【答案】A 

    【解析】 :

    解之:
    4A-B=4×-=13
    故答案为:A
    【分析】先将等式的右边通分化简,再根据分子中的对应项系数相等,建立关于AB的方程组,求出AB的值,再求出4A-B的值即可。

    8.【答案】A 

    【解析】 关键描述语为:提前20分钟完成任务;等量关系为:原计划用的时间-提前的时间=实际用的时间.原计划植树用的时间应该表示为 ,而实际用的时间为 ,那么方程可表示为 .故答案为:A

    【分析】由题意可得相等关系:原计划用的时间-提前的时间=实际用的时间.根据相等关系列出分式方程即可。即设原计划的工作效率为x,则实际的工作效率为1.2x,原计划植树用的时间为,实际用的时间为,20分钟=小时。

    9.【答案】D 

    【解析】 :去分母得,
    解得,
    关于x的分式方程 的解是正实数且

    解得,m<6m≠2.
    故答案为:D.
    【分析】首先将分式方程去分母整理成整式方程,然后将m作为常数,求解得出方程的解,根据分式方程的解是正实数,从而得出关于m的不等式组,,及≠0,求解得出m的取值范围。

    10.【答案】B 

    【解析】 甲班每人的捐款额为: 元,乙班每人的捐款额为: 元,
    根据(2)中所给出的信息,方程可列为:
    故答案为:B
    【分析】设甲班有x人,甲班每人的捐款额为:元,乙班有学生(x-5)人,乙班每人的捐款额为:元,根据乙班平均每人捐款数比甲班平均每人捐款数多,列出方程即可。

    11.【答案】B 

    【解析】 去分母,得a+2=x+1
    解得,x=a+1
    x≤0x+1≠0
    a+1≤0a+1≠-1
    a≤-1a≠-2
    a≤-1a≠-2
    故答案为:B
    【分析】先解分式方程,求出方程的解,再根据方程有解,得出x+1≠0,且x≤0,建立关于a的不等式组,求解即可。

    12.【答案】A 

    【解析】 :设原来的平均车速为xkm/h,则根据题意可列方程为: =1.故答案为:A.【分析】由题意可得相等关系:提速前走完全程所需时间-提速后走完全程所需时间=缩短的时间,根据这个相等关系即可列方程。

    二、填空题

    13.【答案】x=2 

    【解析】 :方程两边同时乘以xx+6)得:
    x+6=4x
    x=2.
    经检验得x=2是原分式方程的解.
    故答案为:2.
    【分析】方程两边同时乘以最先公分母xx+6),将分式方程转化为整式方程,解之即可得出答案.

    14.【答案】-1 

    【解析】 互为相反数.

    方程两边同时乘以(2x-1)(x+4)得
    3(x+4)+32x-1=0
    解之:x=-1
    经检验x=-1时此分式方程的根。
    故答案为:-1【分析】根据若ab互为相反数,则a+b=0,建立关于x的分式方程,解方程检验即可。

    15.【答案】x=1 

    【解析】 两边都乘以x-1,得
    x+m=2x-2
    方程有增根,
    最简公分母x-1=0,即增根是x=1
    x=1代入整式方程,m=-1
    故答案是:x=1.
    【分析】将m看做常数,解分式方程,分式方程有增根,即当x=1时,分母为0,所以有增根,方程的解不等于1 即可.

    16.【答案】x=

    【解析】 根据题意    
    可以知道x1223之间都不可能,在34之间,
     
    x为非整数解,
     
    故答案为:
    【分析】利用已知方程的解来求出新方程的两个解 x = ,再根据[x]表示不大于x的最大整数求出 [ x ] = 3,从而求出x的值 .

    17.【答案】

    【解析】 设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:
    【分析】由题意可知相等关系:甲工程队铺设管道160米所用时间=乙工程队铺设管道200米所用时间,即设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,.

    18.【答案】k3k≠1 

    【解析】 去分母得:  解得:  
    由分式方程的解为负数,得到  
    解得:  
    故答案为:
    【分析】先解关于x的方程,求出x的值,再根据方程的解为负数且x+1≠0,建立不等式,求解即可。

    19.【答案】2 

    【解析】 分式方程可化为:x-5=-m
    由分母可知,分式方程的增根是3
    x=3时,3-5=-m,解得m=2
    故答案为:2
    【分析】先去分母,把分式方程转化为整式方程,再根据分式方程出现增根,就是分母为0,再将增根代入整式方程,就可求出m的值。

    20.【答案】

    【解析】 + + =0
    两边同时乘以abb-a)得:
    a2-2ab-2b2=0
    两边同时除以a2得:
    2 2+2 -1=0
    t= t0,
    2t2+2t-1=0
    t=
    t= = .
    故答案为: .
    【分析】等式两边同时乘以abb-a)得:a2-2ab-2b2=0,两边同时除以a 得:
    2 2+2 -1=0,解此一元二次方程即可得答案.

    21.【答案】

    【解析】 :设甲每小时检x个,则乙每小时检测(x-20)个,
    甲检测300个的时间为,
    乙检测200个所用的时间为
    由等量关系可得
    故答案为
    【分析】根据实际问题列方程,找出列方程的等量关系式:甲检测300个的时间=乙检测200个所用的时间×1-10%),分别用未知数x表示出各自的时间即可

    22.【答案】x=

    【解析】   :根据题意可得:y=x+m−3
     关联数”[1,m−3]的一次函数是正比例函数,
     m−3=0
     解得:m=3
     则关于x的方程+=1变为+=1
     解得:x=
     检验:把x=代入最简公分母3(x−1)≠0
     x=是原分式方程的解,
     故答案为:x=.
    【分析】根据[a  b]为一次函数yaxb(a≠0a  b为实数)关联数得出y=x+m−3,又关联数”[1,m−3]的一次函数是正比例函数,从而得出m−3=0,从而求出m的值,然后将m的值代入分式方程,解方程,再检验即可得出答案。

    三、计算题

    23.【答案】解:化为整式方程得:22xx2x4,解得:x=-2
    x=-2代入原分式方程中,等式两边相等,
    经检验x=-2是分式方程的解 

    【解析】【分析】先去分母,将分式方程转化为整式方程,求出方程的解即可。

    24.【答案】解:去分母,得 ,
    去括号,得
    移项并合并同类项,得 .
    经检验,x=-1是原分式方程的根. 

    【解析】【分析】解分式方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.

    四、解答题

    25.【答案】解:设A车平均速度为10xB车平均速度为7x,依题可得:
    解得:x=15,
    7x=7×15=105km/h),
    10x=10×15=150km/h),
    :A车平均速度为150km/hB车平均速度为105km/h. 

    【解析】【分析】设A车平均速度为10xB车平均速度为7x,根据A车的行驶时间比B车的少1h列出分式方程,解之并检验.

    26.【答案】解:设这种大米的原价为每千克 元,
    根据题意,得 .
    解这个方程,得 .
    经检验, 是所列方程的解.
    答:这种大米的原价为每千克 . 

    【解析】【分析】设这种大米的原价为每千克  x  元,降价后大米的价格是0.8x元,则第一次.购买大米的数量为:千克,第二次购买大米的数量是千克,根据两次购买的大米质量是40千克,列出方程求解并检验即可。

    27.【答案】(1)解:设B型芯片的单价为x/条,则A型芯片的单价为(x9)元/条,
    根据题意得: =
    解得:x=35
    经检验,x=35是原方程的解,
    x9=26
    答:A型芯片的单价为26/条,B型芯片的单价为35/   
    2)解:设购买aA型芯片,则购买(200a)条B型芯片,
    根据题意得:26a+35200a=6280
    解得:a=80
    答:购买了80A型芯片 

    【解析】【分析】(1)设B型芯片的单价为x/条,则A型芯片的单价为(x9)元/条,则用3120元购进A型芯片的数量是条,用4200元购进B型芯片的数量是条,根据用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.列出方程,求解并检验即可;
    2)设购买aA型芯片,则购买(200a)条B型芯片,根据购进A型芯片的钱数+购进A型芯片的钱数=6280,列出方程,求解即可。

     

    相关试卷

    (通用版)中考数学总复习考点10 分式方程及其应用(含解析): 这是一份(通用版)中考数学总复习考点10 分式方程及其应用(含解析),共19页。试卷主要包含了分式方程的定义,解分式方程的一般方法等内容,欢迎下载使用。

    (通用版)中考数学一轮复习卷:概率(含解析): 这是一份(通用版)中考数学一轮复习卷:概率(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    (通用版)中考数学一轮复习卷:整式(含解析): 这是一份(通用版)中考数学一轮复习卷:整式(含解析),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map