搜索
    上传资料 赚现金
    英语朗读宝

    人教版初中数学中考一轮复习知识点汇总

    人教版初中数学中考一轮复习知识点汇总第1页
    人教版初中数学中考一轮复习知识点汇总第2页
    人教版初中数学中考一轮复习知识点汇总第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版初中数学中考一轮复习知识点汇总

    展开

    《有理数》全章复习与巩固(基础)
    【要点梳理】
    要点一、有理数的相关概念
    1.有理数的分类:
    (1)按定义分类:
    (2)按性质分类:
    要点诠释:(1)用正数、负数表示相反意义的量;
    (2)有理数“0”的作用:
    作用
    举例
    表示数的性质
    0是自然数、是有理数
    表示没有
    3个苹果用+3表示,没有苹果用0表示
    表示某种状态
    表示冰点
    表示正数与负数的界点
    0非正非负,是一个中性数
    2.数轴:规定了原点、正方向和单位长度的直线.
    要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.
    (2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.
    3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.
    要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.
    (2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.
    (3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.
    4.绝对值:
    (1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作.



    (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.
    要点二、有理数的运算
    1 .法则:
    (1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.
    (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .
    (3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.
    (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) .
    (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.
      (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;
    ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
    要点诠释:“奇负偶正”口诀的应用:
    (1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,
    -[+(-3)]=3.
    (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.
    (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , .
    2.运算律:
    (1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba;
    (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc)
    (3)分配律:a(b+c)=ab+ac
    要点三、有理数的大小比较
    比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.
    要点四、科学记数法、近似数及精确度
    1.科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=.
    2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.
    要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.
    3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.
    要点诠释:
    (1)精确度是指近似数与准确数的接近程度.
    (2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到米,说明结果与实际数相差不超过米,而有效数字往往用来比较几个近似数哪个更精确些.
    《整式的加减》全章复习与巩固(提高)知识讲解
    【要点梳理】
    要点一、整式的相关概念
    1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.
    要点诠释:(1)单项式的系数是指单项式中的数字因数.
    (2)单项式的次数是指单项式中所有字母的指数和.
    2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.
    要点诠释:(1)在多项式中,不含字母的项叫做常数项.
    (2)多项式中次数最高的项的次数,就是这个多项式的次数.
    (3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.
    3. 多项式的降幂与升幂排列:
      把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.
    要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;
      (2)含有多个字母时,只按给定的字母进行降幂或升幂排列.
    4.整式:单项式和多项式统称为整式.
    要点二、整式的加减
    1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.
    要点诠释:辨别同类项要把准“两相同,两无关”:
    (1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.
    2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.
    要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.
    3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.
    4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.
    5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.
    《一元一次方程》全章复习与巩固(提高)知识讲解
    【要点梳理】
    知识点一、一元一次方程的概念
    1.方程:含有未知数的等式叫做方程.
    2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.
    要点诠释:判断是否为一元一次方程,应看是否满足:
    ①只含有一个未知数,未知数的次数为1;
    ②未知数所在的式子是整式,即分母中不含未知数.
    3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.
    4.解方程:求方程的解的过程叫做解方程.
    知识点二、等式的性质与去括号法则
    1.等式的性质:
    等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
    等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
    2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.
    3.去括号法则:
    (1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
    (2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.
    知识点三、一元一次方程的解法
    解一元一次方程的一般步骤:
    (1)去分母:在方程两边同乘以各分母的最小公倍数.
    (2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.
    (3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.
    (4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.
    (5)系数化为1:方程两边同除以未知数的系数得到方程的解(a≠0).
    (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.
    知识点四、用一元一次方程解决实际问题的常见类型
    1.行程问题:路程=速度×时间 2.和差倍分问题:增长量=原有量×增长率 3.利润问题:商品利润=商品售价-商品进价
    4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数 6.数字问题:多位数的表示方法:例如:.
    《平行线与相交线》全章复习与巩固(提高)知识讲解
    【要点梳理】
    知识点一、相交线
    1.对顶角、邻补角
    两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:

    图形
    顶点
    边的关系
    大小关系
    对顶角
    1
    2
    ∠1与∠2

    有公共顶点
    ∠1的两边与
    ∠2的两边互为反向延长线
    对顶角相等
    即∠1=∠2
    邻补角

    有公共顶点
    ∠3与∠4有一条边公共,另一边互为反向延长线.
    邻补角互补即∠3+∠4=180°
    要点诠释:
    ⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.
    ⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.
    ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.
    ⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.
    2.垂线及性质、距离
    (1)垂线的定义:
    当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作: AB⊥CD,垂足为O.

    要点诠释:
    要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.
    (2)垂线的性质:
    垂线性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记).
    垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.
    (3)点到直线的距离:
    直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P到直线AB的距离是垂线段PO的长.
    要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.
    知识点二、平行线
    1.平行线判定
    判定方法1:同位角相等,两直线平行.
    判定方法2:内错角相等,两直线平行.
    判定方法3:同旁内角互补,两直线平行.
    要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:
    (1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.
    (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).
    (3)在同一平面内,垂直于同一直线的两条直线平行.
    (4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
    2.平行线的性质
    性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.
    要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:
    (1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.
    (2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.
    3.两条平行线间的距离
    如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.

    要点诠释:
    (1)两条平行线之间的距离处处相等.
    (2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.
    (3)如何理解 “垂线段”与 “距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.
    知识点三、命题及平移
    1.命题:判断一件事情的语句,叫做命题.每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.
    2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.
    要点诠释:平移的性质:
    (1)平移后,对应线段平行(或共线)且相等;
    (2)平移后,对应角相等;
    (3)平移后,对应点所连线段平行(或共线)且相等;
    (4)平移后,新图形与原图形是一对全等图形.
    实数全章复习与巩固(提高)
    【要点梳理】
    要点一、平方根和立方根
    类型
    项目
    平方根
    立方根
    被开方数
    非负数
    任意实数
    符号表示


    性质
    一个正数有两个平方根,且互为相反数;
    零的平方根为零;
    负数没有平方根;
    一个正数有一个正的立方根;
    一个负数有一个负的立方根;
    零的立方根是零;
    重要结论



    要点二、实数
    有理数和无理数统称为实数.
    1.实数的分类
    按定义分:
    实数
    按与0的大小关系分:
    实数
     要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.
    (2)无理数分成三类:①开方开不尽的数,如,等;
    ②有特殊意义的数,如π;
    ③有特定结构的数,如0.1010010001…
      (3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.
    (4)实数和数轴上点是一一对应的.
    2.实数与数轴上的点一 一对应.
    数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
    3.实数的三个非负性及性质:
      在实数范围内,正数和零统称为非负数。我们已经学习过的非负数有如下三种形式:
      (1)任何一个实数的绝对值是非负数,即||≥0;
      (2)任何一个实数的平方是非负数,即≥0;
      (3)任何非负数的算术平方根是非负数,即 ().
      非负数具有以下性质:
      (1)非负数有最小值零;
      (2)有限个非负数之和仍是非负数;
      (3)几个非负数之和等于0,则每个非负数都等于0.
    4.实数的运算:
    数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
      有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.
    5.实数的大小的比较:
      有理数大小的比较法则在实数范围内仍然成立.
      法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;
    法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;
     法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.
    《平面直角坐标系》全章复习与巩固(基础)知识讲解
    【要点梳理】
    要点一、有序数对
    把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.
    要点二、平面直角坐标系
    在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:

    要点诠释:
    (1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
    (2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.
    (3)要熟记坐标系中一些特殊点的坐标及特征:
    ① x轴上的点纵坐标为零;y轴上的点横坐标为零.
    ② 平行于x轴直线上的点横坐标不相等,纵坐标相等;
    平行于y轴直线上的点横坐标相等,纵坐标不相等.
    ③ 关于x轴对称的点横坐标相等,纵坐标互为相反数;
    关于y轴对称的点纵坐标相等,横坐标互为相反数;
    关于原点对称的点横、纵坐标分别互为相反数.
    ④ 象限角平分线上的点的坐标特征:
    一、三象限角平分线上的点横、纵坐标相等;
    二、四象限角平分线上的点横、纵坐标互为相反数.
    注:反之亦成立.
    (4)理解坐标系中用坐标表示距离的方法和结论:
    ① 坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.
    ② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;
    y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.
    ③ 平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;
    平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.
    (5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.
    要点三、坐标方法的简单应用
    1.用坐标表示地理位置
    (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
    (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
    (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
    要点诠释:
    (1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.
    (2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.
    2.用坐标表示平移
    (1)点的平移
    点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).
    要点诠释:
    上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.
    (2)图形的平移
    在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
    要点诠释:
    平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.
    《二元一次方程组》全章复习与巩固(提高)知识讲解
    【要点梳理】
    要点一、二元一次方程组的相关概念
    1. 二元一次方程的定义
    定义:方程中含有两个未知数(一般用和),并且未知数的次数都是1,像这样的方程叫做二元一次方程.
    要点诠释:
    (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.
    (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.
    (3)二元一次方程的左边和右边都必须是整式.
    2.二元一次方程的解
    定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
    要点诠释:
    二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为 的形式.
    3. 二元一次方程组的定义
    定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组.
    要点诠释:
    (1)它的一般形式为(其中,,,不同时为零).
    (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.
    (3)符号“”表示同时满足,相当于“且”的意思.
    4. 二元一次方程组的解
    定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
    要点诠释:
    (1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.
    (2)方程组的解要用大括号联立;
    (3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个.
    要点二、二元一次方程组的解法
    1.解二元一次方程组的思想

    2.解二元一次方程组的基本方法:代入消元法和加减消元法
    (1)用代入消元法解二元一次方程组的一般过程:
    ①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式;
    ②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程;
    ③解这个一元一次方程,求出(或)的值;
    ④把(或)的值代入(或)中,求(或)的值;
    ⑤用“”联立两个未知数的值,就是方程组的解.
    要点诠释:
    (1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;
    (2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;
    (3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.
    (2)用加减消元法解二元一次方程组的一般过程:
    ①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;
    ②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;
    ③解这个一元一次方程,求出一个未知数的值;
    ④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;
    ⑤将两个未知数的值用“”联立在一起即可.
    要点诠释:
    当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.
    要点三、实际问题与二元一次方程组


    要点诠释:
    (1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;
    (2)“设”、“答”两步,都要写清单位名称;
    (3)一般来说,设几个未知数就应该列出几个方程并组成方程组.
    要点四、三元一次方程组
    1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
    等都是三元一次方程组.
    要点诠释:理解三元一次方程组的定义时,要注意以下几点:
    (1)方程组中的每一个方程都是一次方程;
    (2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.
    2.三元一次方程组的解法
    解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:
    (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;
    (2)解这个二元一次方程组,求出两个未知数的值;
    (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;
    (4)解这个一元一次方程,求出最后一个未知数的值;
    (5)将求得的三个未知数的值用“{”合写在一起.
    要点诠释:
    (1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.
    (2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.
    3. 三元一次方程组的应用
    列三元一次方程组解应用题的一般步骤:
    (1)弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;
    (2)找出能够表达应用题全部含义的相等关系;
    (3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;
    (4)解这个方程组,求出未知数的值;
    (5)写出答案(包括单位名称).
    要点诠释:
    (1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.
    (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.
    (3)一般来说,设几个未知数,就应列出几个方程并组成方程组.
    不等式与一次不等式组》全章复习与巩固(提高)知识
    【要点梳理】
    要点一、不等式
    1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.
    要点诠释:
    (1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.
    (2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.
    解集的表示方法一般有两种:一种是用最简的不等式表示,例如,等;另一种是用数轴表示,如下图所示:

    (3)解不等式:求不等式的解集的过程叫做解不等式.
    2. 不等式的性质:
    不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.
    用式子表示:如果a>b,那么a±c>b±c
    不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
    用式子表示:如果a>b,c>0,那么ac>bc(或).
    不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
    用式子表示:如果a>b,c<0,那么ac<bc(或).
    要点二、一元一次不等式
    1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,
    要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.
    2.解法:
    解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.
    要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.
    3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:
    (1)审:认真审题,分清已知量、未知量;
    (2)设:设出适当的未知数;
    (3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;
    (4)列:根据题中的不等关系,列出不等式;
    (5)解:解出所列的不等式的解集;
    (6)答:检验是否符合题意,写出答案.
    要点诠释:
    列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.
    要点三、一元一次不等式组
      关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.
    要点诠释:
    (1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.
    (2)解不等式组:求不等式组解集的过程,叫做解不等式组. 
    (3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集. 
    (4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.
    第十章《数据的收集、整理与描述》全章复习与巩固(提高)知识讲解
    统计调查 知识讲解
    【要点梳理】
    要点一、统计调查
    1.统计相关概念
    总体:调查时,调查对象的全体叫做总体.
    个体:组成总体的每一个调查对象叫做个体.
    样本:从总体中取出的一部分个体叫做总体的一个样本.
    样本容量:样本中个体的数量叫做样本容量(不带单位).
    要点诠释:
    (1)“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.
    (2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.
    (3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.
    2. 调查的方法:全面调查和抽样调查
    (1)全面调查:考察全体对象的调查叫做全面调查.
    要点诠释:
    (1)全面调查又叫“普查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据.
    (2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.
    (2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.
    要点诠释:
    (1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.
    (2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如“全面调查”得到的结果准确.
    (3)调查方法的选择:
    ①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.
    ②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.
    要点二、数据的描述
    描述数据的方法有两种:统计表和统计图.
    统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据
    统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.
    要点诠释:
    (1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.
    (2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.
    (3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.
    【要点梳理】
    要点一、组距、频数与频数分布表的概念
    1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).
    2.频数:落在各小组内数据的个数.
    3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.
    要点诠释:
    (1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;
    ③确定分点;④列频数分布表;
    (2)频数之和等于样本容量.
    (3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.
    要点二、频数分布直方图
    1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.
    (1)横轴:直方图的横轴表示分组的情况(数据分组);
    (2)纵轴:直方图的纵轴表示频数;
    (3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.
    2.作直方图的步骤:
    (1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.
    要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.
    (2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.
    3.直方图和条形图的联系与区别:
    (1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;
    (2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.
    要点三、频数分布折线图
    频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.
    《三角形》全章复习与巩固(提高)知识讲解
    【要点梳理】
    要点一、三角形的有关概念和性质
    1.三角形三边的关系:
    定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.
    要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.
    2.三角形按“边”分类:


    3.三角形的重要线段:
    (1)三角形的高
    从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.
    要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.
    (2)三角形的中线
    三角形的一个顶点与它的对边中点的连线叫三角形的中线,
    要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.
    (3)三角形的角平分线
    三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
    要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.
    要点二、三角形的稳定性
      如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.
    要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.
    要点三、三角形的内角和与外角和
    1.三角形内角和定理:三角形的内角和为180°.
    推论:1.直角三角形的两个锐角互余
    2.有两个角互余的三角形是直角三角形
    2.三角形外角性质:
    (1)三角形的一个外角等于与它不相邻的两个内角的和.
    (2)三角形的一个外角大于任意一个与它不相邻的内角.
    3.三角形的外角和: 三角形的外角和等于360°.
    要点四、多边形及有关概念
    1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 
      要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.
    2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.
    要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.
    3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
                    
    要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;
    (2)n边形共有 条对角线.
    要点五、多边形的内角和及外角和公式
    1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .
    要点诠释:(1)一般把多边形问题转化为三角形问题来解决;
    (2)内角和定理的应用:
    ①已知多边形的边数,求其内角和;
    ②已知多边形内角和,求其边数.  
    2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.
    要点诠释:(1)外角和公式的应用:
        ①已知外角度数,求正多边形边数;
        ②已知正多边形边数,求外角度数. 
      (2)多边形的边数与内角和、外角和的关系:
        ①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.
    要点六、镶嵌的概念和特征
    1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.
      要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.
    (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.
    全等三角形全章复习与巩固(提高)
    【要点梳理】
    要点一、全等三角形的判定与性质

    一般三角形
    直角三角形
    判定
    边角边(SAS)
    角边角(ASA)
    角角边(AAS)
    边边边(SSS)
    两直角边对应相等
    一边一锐角对应相等
    斜边、直角边定理(HL)
    性质
    对应边相等,对应角相等
    (其他对应元素也相等,如对应边上的高相等)
    备注
    判定三角形全等必须有一组对应边相等






    要点二、全等三角形的证明思路

    要点三、角平分线的性质
    1.角的平分线的性质定理
      角的平分线上的点到这个角的两边的距离相等.
    2.角的平分线的判定定理
      角的内部到角的两边距离相等的点在角的平分线上.
    3.三角形的角平分线
    三角形角平分线交于一点,且到三边的距离相等.
    4.与角平分线有关的辅助线
    在角两边截取相等的线段,构造全等三角形;
    在角的平分线上取一点向角的两边作垂线段.
    要点四、全等三角形证明方法
    全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.
    1. 证明线段相等的方法:
    (1) 证明两条线段所在的两个三角形全等.
    (2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.
    (3) 等式性质.
    2. 证明角相等的方法:
    (1) 利用平行线的性质进行证明.
    (2) 证明两个角所在的两个三角形全等.
    (3) 利用角平分线的判定进行证明.
    (4) 同角(等角)的余角(补角)相等.
    (5) 对顶角相等.
    3. 证明两条线段的位置关系(平行、垂直)的方法:
    可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.
    4. 辅助线的添加:
    (1)作公共边可构造全等三角形;
    (2)倍长中线法;
    (3)作以角平分线为对称轴的翻折变换全等三角形;
    (4)利用截长(或补短)法作旋转变换的全等三角形.
    5. 证明三角形全等的思维方法:
    (1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.
    (2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.
    (3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.
    轴对称全章复习与巩固(提高)
    【要点梳理】
    要点一、轴对称
    1.轴对称图形和轴对称  
    (1)轴对称图形
    如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
    (2)轴对称
      定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:
    ①关于某条直线对称的两个图形形状相同,大小相等,是全等形;
    ②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;
    ③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.
    (3)轴对称图形与轴对称的区别和联系
    区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.
    2.线段的垂直平分线
    线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
    要点二、作轴对称图形
    1.作轴对称图形
    (1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;
    (2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
    2.用坐标表示轴对称
    点(,)关于轴对称的点的坐标为(,-);点(,)关于轴对称的点的坐标为(-,);点(,)关于原点对称的点的坐标为(-,-).
    要点三、等腰三角形
    1.等腰三角形
      (1)定义:有两边相等的三角形,叫做等腰三角形.
    (2)等腰三角形性质
     ①等腰三角形的两个底角相等,即“等边对等角”;
    ②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.
    (3)等腰三角形的判定
    如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等    边”).
    2.等边三角形
      (1)定义:三条边都相等的三角形,叫做等边三角形.
    (2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.  
    (3)等边三角形的判定:
    ①三条边都相等的三角形是等边三角形;
    ②三个角都相等的三角形是等边三角形;
    ③有一个角为 60°的等腰三角形是等边三角形.
    3.直角三角形的性质定理:
    在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
    整式的乘除与因式分解 全章复习与巩固(提高)
    【要点梳理】
    要点一、幂的运算
    1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.
    2.幂的乘方: (为正整数);幂的乘方,底数不变,指数相乘.
    3.积的乘方: (为正整数);积的乘方,等于各因数乘方的积.
    4.同底数幂的除法:(≠0, 为正整数,并且).
    同底数幂相除,底数不变,指数相减.
    5.零指数幂:即任何不等于零的数的零次方等于1.
    要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.
    要点二、整式的乘法和除法
    1.单项式乘以单项式
    单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
    2.单项式乘以多项式
    单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).
    3.多项式乘以多项式
    多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.
    要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.
    4.单项式相除
    把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.
    5.多项式除以单项式
    先把这个多项式的每一项分别除以单项式,再把所得的商相加.
    即:
    要点三、乘法公式
    1.平方差公式:
    两个数的和与这两个数的差的积,等于这两个数的平方差.
    要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.
    平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.
    2. 完全平方公式:;
    两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.
    要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.
    要点四、因式分解
    把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
    因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.
    要点诠释:落实好方法的综合运用:
    首先提取公因式,然后考虑用公式;
    两项平方或立方,三项完全或十字;
    四项以上想分组,分组分得要合适;
    几种方法反复试,最后须是连乘式;
    因式分解要彻底,一次一次又一次.
    分式全章复习与巩固(提高)
    【要点梳理】
    要点一、分式的有关概念及性质
    1.分式
    一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.
    要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.
    2.分式的基本性质
      (M为不等于0的整式).
    3.最简分式
    分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.
    要点二、分式的运算
    1.约分 
    利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.
    2.通分
    利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.  
    3.基本运算法则
      分式的运算法则与分数的运算法则类似,具体运算法则如下:
    (1)加减运算
    ;同分母的分式相加减,分母不变,把分子相加减.
    ;异分母的分式相加减,先通分,变为同分母的分式,再加减.
    (2)乘法运算 ,其中是整式,.
    两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
    (3)除法运算 ,其中是整式,.
    两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.
    (4)乘方运算
    分式的乘方,把分子、分母分别乘方。
    4.零指数
      .
    5.负整数指数
      
    6.分式的混合运算顺序
     先算乘方,再算乘除,最后加减,有括号先算括号里面的.
    要点三、分式方程
    1.分式方程的概念
    分母中含有未知数的方程叫做分式方程.
    2.分式方程的解法
    解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.
    3.分式方程的增根问题
    增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.
    要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.
    要点四、分式方程的应用
      列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.
    《二次根式》全章复习与巩固--知识讲解(提高)
    【要点梳理】
    知识点一、二次根式的相关概念和性质
    1. 二次根式
    形如的式子叫做二次根式,如等式子,都叫做二次根式.
    要点诠释:二次根式有意义的条件是,即只有被开方数时,式子才是二次根式,才有意义.
    2.二次根式的性质
    (1);
    (2);
    (3).
    要点诠释:(1) 一个非负数可以写成它的算术平方根的平方的形式,即(),如().
    (2) 中的取值范围可以是任意实数,即不论取何值,一定有意义.
    (3)化简时,先将它化成,再根据绝对值的意义来进行化简.
    (4)与的异同
    不同点:中可以取任何实数,而中的必须取非负数;
    =,=().
    相同点:被开方数都是非负数,当取非负数时,=.
    3. 最简二次根式
    1)被开方数是整数或整式;
    2)被开方数中不含能开方的因数或因式.
    满足上述两个条件的二次根式,叫做最简二次根式.如等都是最简二次根式.
    要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.
    4.同类二次根式
    几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.
    要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如与,由于=,与显然是同类二次根式.
    知识点二、二次根式的运算
    1. 乘除法
    (1)乘除法法则:
    类型
    法则
    逆用法则
    二次根式的乘法

    积的算术平方根化简公式:

    二次根式的除法

    商的算术平方根化简公式:

    要点诠释:
    (1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如.
    (2)被开方数a、b一定是非负数(在分母上时只能为正数).如.
    2.加减法
    将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.
    要点诠释:
    二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如.
    勾股定理全章复习与巩固(提高)
    【要点梳理】
    要点一、勾股定理
    1.勾股定理:
    直角三角形两直角边的平方和等于斜边的平方.(即:)
    2.勾股定理的应用
    勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:
    (1)已知直角三角形的两边,求第三边;
    (2)利用勾股定理可以证明有关线段平方关系的问题;
    (3)求作长度为的线段.
    要点二、勾股定理的逆定理
    1.原命题与逆命题
      如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.
    2.勾股定理的逆定理
       勾股定理的逆定理:
    如果三角形的三边长,满足,那么这个三角形是直角三角形.
    应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:
    (1)首先确定最大边,不妨设最大边长为;
    (2)验证与是否具有相等关系,若,则△ABC是以∠C为直角的直角三角形,反之,则不是直角三角形.
    3.勾股数
    满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.
    常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.
    如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形.
    观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:
    1.较小的直角边为连续奇数;
    2.较长的直角边与对应斜边相差1.
    3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)
    要点三、勾股定理与勾股定理逆定理的区别与联系
    区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
    联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.
    平行四边形全章复习与巩固(提高)
    【要点梳理】
    要点一、平行四边形
    1.定义:两组对边分别平行的四边形叫做平行四边形.
    2.性质:(1)对边平行且相等;
    (2)对角相等;邻角互补;
    (3)对角线互相平分;
    (4)中心对称图形.
    3.面积:
    4.判定:边:(1)两组对边分别平行的四边形是平行四边形;
    (2)两组对边分别相等的四边形是平行四边形;
    (3)一组对边平行且相等的四边形是平行四边形.
    角:(4)两组对角分别相等的四边形是平行四边形;
    (5)任意两组邻角分别互补的四边形是平行四边形.
    边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;
    对角线:(7)对角线互相平分的四边形是平行四边形.
    要点诠释:平行线的性质:
    (1)平行线间的距离都相等;
    (2)等底等高的平行四边形面积相等.
    要点二、矩形
    1.定义:有一个角是直角的平行四边形叫做矩形.
    2.性质:(1)具有平行四边形的所有性质;
    (2)四个角都是直角;
    (3)对角线互相平分且相等;
    (4)中心对称图形,轴对称图形.
    3.面积:
    4.判定:(1) 有一个角是直角的平行四边形是矩形.
    (2)对角线相等的平行四边形是矩形.
    (3)有三个角是直角的四边形是矩形.
    要点诠释:由矩形得直角三角形的性质:
    (1)直角三角形斜边上的中线等于斜边的一半;
    (2)直角三角形中,30度角所对应的直角边等于斜边的一半.
    要点三、菱形
    1. 定义:有一组邻边相等的平行四边形叫做菱形.
    2.性质:(1)具有平行四边形的一切性质;
    (2)四条边相等;
    (3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;
    (4)中心对称图形,轴对称图形.
    3.面积:
    4.判定:(1)一组邻边相等的平行四边形是菱形;
    (2)对角线互相垂直的平行四边形是菱形;
    (3)四边相等的四边形是菱形.
    要点四、正方形
    1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.
    2.性质:(1)对边平行;
    (2)四个角都是直角;
    (3)四条边都相等;
    (4)对角线互相垂直平分且相等,对角线平分对角;
    (5) 两条对角线把正方形分成四个全等的等腰直角三角形;
    (6)中心对称图形,轴对称图形.
    3.面积:边长×边长=×对角线×对角线
    4.判定:(1)有一个角是直角的菱形是正方形;
    (2)一组邻边相等的矩形是正方形;
    (3)对角线相等的菱形是正方形;
    (4)对角线互相垂直的矩形是正方形;
    (5)对角线互相垂直平分且相等的四边形是正方形;
    (6)四条边都相等,四个角都是直角的四边形是正方形.
    一次函数全章复习与巩固(提高)
    【要点梳理】
    要点一、函数的相关概念
    一般地,在一个变化过程中. 如果有两个变量 与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数.
    是的函数,如果当=时=,那么叫做当自变量为时的函数值.
    函数的表示方法有三种:解析式法,列表法,图象法.
    要点二、一次函数的相关概念
      一次函数的一般形式为,其中、是常数,≠0.特别地,当=0时,一次函数即(≠0),是正比例函数.
    要点三、一次函数的图象及性质
    1、函数的图象
      如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
    要点诠释:
    直线可以看作由直线平移||个单位长度而得到(当>0时,向上平移;当<0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化.
    2、一次函数性质及图象特征
    掌握一次函数的图象及性质(对比正比例函数的图象和性质)

    要点诠释:
    理解、对一次函数的图象和性质的影响:
    (1)决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限.
    (2)两条直线:和:的位置关系可由其系数确定:
    与相交;
    ,且与平行;
    ,且与重合;
    (3)直线与一次函数图象的联系与区别
    一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.
    要点四、用函数的观点看方程、方程组、不等式 
    方程(组)、不等式问题
    函 数 问 题
    从“数”的角度看
    从“形”的角度看
    求关于、的一元一次方程=0(≠0)的解
    为何值时,函数的值为0?
    确定直线与轴(即直线=0)交点的横坐标
    求关于、的二元一次方程组的解.
    为何值时,函数与函数的值相等?
    确定直线与直线的交点的坐标
    求关于的一元一次不等式>0(≠0)的解集
    为何值时,函数的值大于0?
    确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围
    数据的分析
    【要点梳理】
    要点一、算术平均数和加权平均数
    一般地,对于个数,我们把叫做这个数的算术平均数,简称平均数,记作.计算公式为.
    要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.
    (1)当一组数据较大时,并且这些数据都在某一常数附近上、下波动时,一般选用简化计算公式.其中为新数据的平均数,为取定的接近这组数据的平均数的较“整”的数.
    (2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.
    若个数的权分别是,则叫做这个数的加权平均数.
    要点诠释:(1)相同数据的个数叫做权,越大,表示的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.
    (2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算.
    要点二、中位数和众数
    1.中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.
    要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.
    (2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.
    2.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.
    要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个;如果所有数据出现的次数都一样,那么这组数据就没有众数.
    (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.
    要点三、平均数、中位数与众数的联系与区别
    联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要.
    区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述.
    要点四、极差、方差和标准差
    用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.
    要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定.
    方差是反映一组数据的整体波动大小的特征的量.方差的计算公式是:
      
      要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.
    (2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变.
    (3)一组数据的每一个数据都变为原来的倍,则所得的一组新数据的方差变为原来的倍.
    方差的算术平方根叫做这组数据的标准差,用符号表示,即:
      ;标准差的数量单位与原数据一致.
    要点五、极差、方差和标准差的联系与区别
    联系:极差与方差、标准差都是表示一组数据离散程度的特征数.
    区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差.
    要点六、用样本估计总体
    在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差.
    要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.
    (2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.
    《一元二次方程》全章复习与巩固—知识讲解(提高)
    【要点梳理】
    要点一、一元二次方程的有关概念
    1. 一元二次方程的概念:
      通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.
    2. 一元二次方程的一般式:
     
    3.一元二次方程的解:
      使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.
    要点诠释:
    判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.
    对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.
    要点二、一元二次方程的解法
    1.基本思想
    一元二次方程一元一次方程
    2.基本解法
    直接开平方法、配方法、公式法、因式分解法.
    要点诠释:
    解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解
    法,再考虑用公式法.

    要点三、一元二次方程根的判别式及根与系数的关系
    1.一元二次方程根的判别式
    一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.
    (1)当△>0时,一元二次方程有2个不相等的实数根;
    (2)当△=0时,一元二次方程有2个相等的实数根;
    (3)当△

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map