冀教版八年级下册第二十章 函数综合与测试练习题
展开冀教版八年级数学下册第二十章函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为,与之间的函数关系的图象为图2所示,则的周长为( )
A. B. C. D.
2、如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是( )
A. B.
C. D.
3、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
4、下面分别给出了变量x与y之间的对应关系,其中y是x函数的是( )
A. B.C. D.
5、函数中,自变量x的取值范围是( )
A. B.且 C. D.且
6、甲、乙两人骑车分别从A、B两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B地后停留20min 再以原速返回A地,当两人到达A地后停止骑行.设甲出发x min后距离A地的路程为y km.图中的折线表示甲在整个骑行过程中y与x的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min)可能是( )
A.0.1 B.0.15 C.0.2 D.0.25
7、下列图像中表示是的函数的有几个( )
A.1个 B.2个 C.3个 D.4个
8、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )
A.点A B.点B C.点C D.点D
9、如图,在边长为4的等边△ABC中,点P从A点出发,沿A→B→C→A的方向运动,到达A点时停止.在此过程中,线段AP的长度y随点P经过的路程x的函数图象大致是( )
A. B.
C. D.
10、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )
A.出租车的速度为100千米/小时 B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时 D.家距离景区共400千米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知函数y=,那么自变量x的取值范围是_________.
2、已知,(a),那么__.
3、已知f(x)=,那么f()=___.
4、如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为____________.
5、小明使用图形计算器探究函数的图象,他输入了一组,的值,得到了如图的函数图象,由学习函数的经验,可以推断出小明输入的__0,__0.(填“”,“”或“”
三、解答题(5小题,每小题10分,共计50分)
1、下图是某物体的抛射曲线图,其中表示物体与抛射点之间的水平距离,表示物体的高度.
(1)这个图象反映了哪两个变量之间的关系?
(2)根据图象填表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
|
|
|
|
|
|
|
(3)当距离取之间的一个确定的值时,相应的高度确定吗?
(4)高度可以看成距离的函数吗?
2、 “漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下页哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)
3、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.
x | …… | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | …… |
y | …… | a | 4 | b | …… |
(1)请直接写出上述表中、的值:a= ,b= ;
(2)请在给出的图中补全该函数的大致图象;
(3)请根据这个函数的图象,写出该函数的一条性质: ;
(4)已知函数的图象如图所示,在的范围内,请直接不等式的解集: .(保留一位小数,误差不超过0.2).
4、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:
月份 | 用水量x(m3) | 收费y(元) |
3 | 5 | 7.5 |
4 | 9 | 27 |
(1)求a、c的值;
(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;
(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.
5、有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)列表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣0.5 | 0 | 0.2 | 1.8 | 2 | 2.5 | 3 | 4 | n | 6 | 7 | … |
y | … | ﹣1 | m | ﹣1.5 | ﹣2 | ﹣3 | ﹣4 | ﹣6 | ﹣7.5 | 7.5 | 6 | 4 | 3 | 2 | 1.5 | 1.2 | 1 | … |
求出表中m的值为 ,n的值为 .
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;
(3)观察发现:结合函数的图象,写出该函数的两条性质:① ;② .
-参考答案-
一、单选题
1、D
【解析】
【分析】
由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.
【详解】
解:由函数图象可得:阴影部分的最大面积为:3,
,且,
解得: (负根舍去)
所以的周长为:
故选D
【点睛】
本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.
2、B
【解析】
【分析】
根据动点P的正方形各边上的运动状态分类讨论△APD的面积即可;
【详解】
由点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0;
当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8;
当8≤x≤12时,点P在CB上运动,△APD的面积y=8;
当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32;
故选B.
【点睛】
本题主要考查了正方形的性质,动点问题与函数图象结合,准确分析计算是解题的关键.
3、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
4、D
【解析】
【分析】
函数的意义反映在图象上简单的判断方法是:做垂直轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
解:根据函数的意义可知:对于自变量的任何值,都有唯一的值与之相对应,所以D正确.
故选:D.
【点睛】
本题主要考查了函数图象的读图能力,解题的关键是要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
5、B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x-2≥0且x−3≠0,
解得且.
故选:B.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
6、D
【解析】
【分析】
由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.
【详解】
解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),
∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,
∴乙的骑行的速度至少为25÷120= (km/min),
∵>0.2,<0.25,
∴乙的骑行速度可能是0.25km/min,
故选:D.
【点睛】
本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.
7、A
【解析】
【分析】
函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
【详解】
解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
故第2个图符合题意,其它均不符合,
故选:A.
【点睛】
本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
8、B
【解析】
【分析】
由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.
【详解】
解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.
故选:B.
【点睛】
本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.
9、A
【解析】
【分析】
根据题意,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,据此判断即可.
【详解】
解:由题意可知,当点从点运动到点时,的长度随的增大而增大;当点从运动到的中点时,随的增大而减小;且当时,的值最小,故可排除选项与选项;
当点从的中点运动到点时,随的增大而增大;当点从运动到时,随的增大而减小,最后减小至0,且和时,的值相等,故选项符合题意,选项不合题意.
故选:A.
【点睛】
本题考查了动点问题的函数图象,三角形的面积等知识,解题的关键是熟练掌握数形结合思想方法.
10、B
【解析】
【分析】
先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.
【详解】
解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,
故选项A正确;
设小南t小时追上小开,
50(2+1+0.5+t)=100t,
解得t=3.5,
∴100×3.5=350千米,
故选项B不正确;
50(2+1+0.5+t+0.5)=100t,
解得t=4,
∴小南到达景区时共用2+1+0.5+4=7.5小时,
故选项C正确;
∵100×4=400千米,
∴家距离景区共400千米,
故选项D正确.
故选B.
【点睛】
本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.
二、填空题
1、
【解析】
【分析】
根据二次根式有意义的条件列出不等式,解不等式得到答案.
【详解】
解:由题意得,,
解得,,
故答案为:.
【点睛】
本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.
2、
【解析】
【分析】
由(a),建立方程,再解方程并检验可得答案.
【详解】
解:因为,
所以(a),
所以:
解得,
经检验是方程的解,
故答案为:.
【点睛】
本题考查的是已知函数值,求解自变量的值,分式方程的解法,理解题意得到方程是解本题的关键.
3、####
4、24cm²
【解析】
【分析】
从注水24秒到42秒这一段,根据水面升高的高度及圆柱的体积公式,可求得注水的速度;从开始的18秒内的注水情况可求得“几何体”下方圆柱的高,即a的值,从而可得“几何体”上方圆柱的高,并计算出18秒到24秒注水的体积,设“几何体”上方圆柱的底面积为S,可得到关于S的方程,解方程即可求得S.
【详解】
由图②知,从注水24秒到42秒这一段,水面升高了14−11=3(cm),则共注水30×3=90(cm3),则注水的速度为90÷(42−24)=5(cm3/s);
前18秒共注水18×5=90(cm3),则a=90÷(30−15)=6(cm);
18秒到24秒共注水(24−18)×5=30(cm3),设“几何体”上方圆柱的底面积为S,则可得方程:(11−6)(30−S)=30
解得:S=24
即“几何体”上方圆柱的底面积为24cm2.
故答案为:24cm²
【点睛】
本题考查了函数的图象,圆柱的体积等知识,读懂函数图象,图象中获取信息是关键;另外计算出注水速度也是本题的关键.
5、
【解析】
【分析】
由图象可知,当时,,可知;根据函数解析式自变量的取值范围可以知道,结合图象可以知道函数的取不到的值大概是在1的位置,所以大概预测可以得约为1,也即.
【详解】
解:由图象可知,当时,,
;
,结合图象可以知道函数的取不到的值大概是在1的位置,
.
故答案为:,.
【点睛】
本题考查函数的图象,解题的关键是能够通过已学的反比例函数图象确定的取值.
三、解答题
1、(1)反映了拋射距离与高度之间的关系;(2)2.0,2.5,2.65,2.5,2.0,1.2,0;(3)确定;(4)可以
【解析】
【分析】
(1)根据变量的定义,即可求解;
(2)根据图象填表即可;
(3)根据这一范围内对于任一个距离,对应的函数值高度是唯一的,即可得到相应的高度是确定的;
(4)根据函数的定义,即可求解.
【详解】
解:(1)根据题意得:这个图象反映了高度与拋射水平距离之间的关系;
(2)根据图象填表如下:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
2.0 | 2.5 | 2.65 | 2.5 | 2.0 | 1.2 | 0 |
(3)当距离取之间的一个确定的值时,相应的高度是确定的,
理由如下:因为这一范围内对于任一个距离,对应的函数值高度是唯一的,所以相应的高度是确定的;
(4)∵高度随距离的变化而变化,并且对于任一个距离,对应的函数值高度是唯一的,
∴高度可以看成距离的函数.
【点睛】
本题主要考查了函数与变量,熟练掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量是解题的关键.
2、图(2)
【解析】
【分析】
根据题意,可知y随x的增大而减小,符合一次函数图象,从而可以解答本题.
【详解】
解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,
∴y随x的增大而匀速的减小,符合一次函数图象,
∴图象(2)适合表示y与x的对应关系.
【点睛】
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
3、(1),;(2)图像见解析;(3)函数图像与x轴没有交点,且函数值都大于0(答案不唯一);(4)
【解析】
【分析】
(1)将x=0,3分别代入解析式即可得y的值,即可求出a、b的值;
(2)描点、连线即可;
(3)观察函数图象即可求得;
(4)观察函数图像,先确定的范围内的交点,再由上下位置比较大小即可.
【详解】
(1)把代入解析式得;
把代入解析式得
故答案为:,;
(2)函数图像如图:
(3)由函数图像可知:函数图像与x轴没有交点,且函数值都大于0(答案不唯一)
(4)由图象可知:在的范围内
的解集为.
【点睛】
本题主要考查函数的图象和性质,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
4、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.
【解析】
【分析】
(1)根据题意列出方程组,解出即可求解;
(2)分时和当时,列出函数关系式,即可求解;
(3)根据 ,将 代入,即可求解.
【详解】
解:(1)根据题意得:
,
解得: ;
(2)当时,,
当时,;
(3)∵ ,
∴该用户5月份的水费(元).
【点睛】
本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.
5、(1)x≠1;(2)2,5,图象见解析;(3)①图象是中心对称图形,对称中心的坐标是(1,0);②当x>1时,y随x的增大而减小(答案不唯一).
【解析】
【分析】
(1)根据分母不为0即可得出关于x的不等式,解之即可求解;
(2)将x=4代入函数解析式即可求出m的值,将y=1.5代入函数解析式即可求出n的值;然后用平滑曲线连线即可画出函数图象;
(3)观察函数图象,从增减性及对称性得出结论即可.
【详解】
(1)由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1;
(2)当x=4时,m=,
当y=1.5时,则1.5=,解得n=5,
描点、连线画出函数图象如图,
故答案为:2,5;
(3)观察函数图象发现:
①该图象是中心对称图形,对称中心的坐标是(1,0),
②当x>1时,y随x的增大而减小.
答案不唯一.
【点睛】
本题考查了反比例函数图象上点的坐标特征,函数自变量取值范围及反比例函数的性质,解题关键是理解题意,学会利用图象法解决问题.
冀教版八年级下册第二十章 函数综合与测试课时作业: 这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共23页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试同步训练题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步训练题,共25页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题,共21页。试卷主要包含了下图中表示y是x函数的图象是,如图所示的图象等内容,欢迎下载使用。