搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题测试试卷(无超纲)

    2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题测试试卷(无超纲)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题测试试卷(无超纲)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十章函数专题测试试卷(无超纲)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第二十章 函数综合与测试课后练习题

    展开

    这是一份初中冀教版第二十章 函数综合与测试课后练习题,共23页。
    冀教版八年级数学下册第二十章函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在函数中,自变量x的取值范围是(       A. B. C. D.2、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,Sx的变化而变化,则Sx满足的函数关系是(        A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x3、下列图象表示yx的函数的是(       A. B. C. D.4、变量xy之间的关系是,当时,自变量x的值是(       A.13 B.5 C.2 D.35、下列各自线中表示yx的函数的是(       A. B.C.D.6、下列四个图象中,能表示yx的函数的是(       A. B.C. D.7、下列关于变量xy的关系,其中y不是x的函数的是(  )A. B.C. D.8、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有(       )个A.1 B.2 C.3 D.49、下列曲线中,表示yx的函数的是(       A. B.C. D.10、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为之间的函数关系的图象为图2所示,则的周长为(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知fx)=,那么f)=___.2、若正方形的边长为x,面积为y,则yx之间的关系式为_______().3、函数的自变量x的取值范围是________.4、如图1,点P从△ABC的顶点A出发,沿ABC匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是___.5、在函数中,自变量的取值范围是___________.三、解答题(5小题,每小题10分,共计50分)1、下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数的解析式.(1)改变正方形的边长x,正方形的面积S随之改变.(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化.(3)秀水村的耕地面积是,这个村人均占有耕地面积y(单位;)随这个村人数n的变化而变化.(4)水池中有水,此后每小时漏水,水池中的水量V(单位:L)随时间t(单位:h)的变化而变化.2、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,按要求完成下列各小题:(1)写出解析式中ab的值,____________、____________;x0123451236321(2)在图中补全该函数图象,并写出这个函数的一条性质_____________;(3)已知函数的图象如图所示,结合图象,直接写出的解集.(近似值保留一位小数,误差不超过0.2)3、下列各曲线中哪些表示yx的函数?4、综合与实践:制作一个无盖长方形盒子.用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;剪去正方形的边长/cm12345678910容积/cm3324512__________500384252128360(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?(        A.一直增大                  B.一直减小C.先增大后减小            D.先减小后增大(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?5、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m -参考答案-一、单选题1、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.2、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=xx+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.3、D【解析】【分析】根据函数的定义,按照一一对应的原则去判断即可. 当任意一个都有唯一的一个与之对应,则称的函数.【详解】当任意一个都有唯一的一个与之对应,则称的函数.由图象可知:A,B,C选项都不符合题意,D选项符合题意.故选D.【点睛】本题考查了函数的图像表示法,正确理解变量之间的一一对应思想是解题的关键.4、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.5、C【解析】【分析】根据函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,的函数)逐项判断即可得.【详解】解:A、一个的值对应两个或三个的值,则此项不符题意;B、一个的值对应一个或两个的值,则此项不符题意;C、任意一个都有唯一确定的一个和它对应,则此项符合题意;D、一个的值对应一个或两个的值,则此项不符题意;故选:C.【点睛】本题考查了函数,掌握理解函数的概念是解题关键.6、A【解析】【分析】根据“在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,yx的函数”,由此可排除选项.【详解】解:选项A符合函数的概念,而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,故选A.【点睛】本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.7、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,的函数)是解题关键.8、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t分钟追上甲,解得t=7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量,对于的每一个确定的值,都有唯一的值与其对应,那么就说的函数,是自变量.10、D【解析】【分析】由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.【详解】解:由函数图象可得:阴影部分的最大面积为:3, ,且 解得: (负根舍去) 所以的周长为: 故选D【点睛】本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.二、填空题1、####2、【解析】【分析】根据正方形的面积公式列出函数关系式即可;【详解】y=x2【点睛】本题考查列函数关系式,掌握正方形的面积公式是得出函数关系式的前提.3、【解析】【分析】根据零指数幂以及二次根式有意义的条件以及分式有意义的条件进行解答即可.【详解】解:∵函数解得:∴函数的自变量x的取值范围是故答案为:【点睛】本题考查了零指数幂,二次根式有意义的条件,分式有意义的条件,熟知分母不为零,根号下为非负数,任何非零实数的零次幂等于是解本题的关键.4、48【解析】【分析】根据图象可知点PAB上运动时,此时AP不断增大,而从BC运动时,AP先变小后变大,从而可求出BCBC上的高.【详解】解:根据图象可知,点PAB上运动时,此时AP不断增大,由图象可知:点PAB运动时,AP的最大值为10,即AB=10,PBC运动时,AP的最小值为8,BC边上的高为8,∴当APBCAP=8,此时,由勾股定理可知:BP=6,由于图象的曲线部分是轴对称图形,PC=6,BC=12,∴△ABC的面积为:×8×12=48,故答案为48.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BCAB的长度.5、【解析】【分析】根据算术平方根的非负性即可完成.【详解】解:由题意得,解得,故答案为:【点睛】本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.三、解答题1、(1)自变量x,函数S(2)自变量x,函数y(3)自变量n,函数y(4)自变量t,函数V【解析】【分析】(1)正方形的边长x为自变量,面积S随之改变,则面积S为边长x的函数;(2)每分向一水池注水,注水量y(单位:)随注水时间x(单位:)的变化而变化,则注水量y(单位:)是注水时间x(单位:)的函数;(3)这个村人数为n,人均占有耕地面积y(单位;)随这个村人数n的变化而变化,则人均占有耕地面积y(单位;)是村人数n的函数;(4)时间为t(单位:h),水池中的水量V(单位:L)随时间t(单位:h)的变化而变化,则水池中的水量V(单位:L)是时间t(单位:h)的函数.【详解】解:(1)自变量x,函数S(2)自变量x,函数y(3)自变量n,函数y(4)自变量t,函数V【点睛】本题考查变量与函数,理解函数的定义,准确确定自变量与函数是解题关键.2、(1);(2)画图见解析,当增大而增大(答案不唯一);(3)【解析】【分析】(1)用待定系数法求解函数解析式,即可求得(2)补全图象,并观察图象,当时,增大而增大(答案不唯一);(3)根据图象两函数交点,即可求得不等式的解集.【详解】解:(1)将代入函数解得:故答案为:(2)补全该函数如下,由图象可得,当增大而增大(答案不唯一);(3)由(1)可得观察图象可知,的解集为【点睛】本题考查利用待定系数法求得函数中系数的值,函数的性质,利用函数图象解不等式,其中利用函数图象解不等式是解题关键.3、图(1)(2)(3)中yx的函数【解析】【分析】设在一个变化过程中有两个变量xy,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说yx的函数,x是自变量.由此即可得出结论.【详解】解:图(1)对于自变量x的任何值,y都有唯一的值与之相对应,yx的函数; 图(2)对于自变量x的任何值,y都有唯一的值与之相对应,yx的函数; 图(3)对于自变量x的任何值,y都有唯一的值与之相对应,yx的函数;图(4)对于一部分自变量x的值,y有两个值与之相对应, y不是x的函数;故图(1)(2)(3)中yx的函数【点睛】本题主要考查了函数概念,关键是掌握注意对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.4、 (1)b;(a-2b)2b(a-2b)2(2)588;576(3)C(4)3;588(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【解析】【分析】(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.(1)解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b2cm2, 做成一个无盖的长方体盒子的体积为ba-2b2cm3故答案为:b;(a-2b2ba-2b2(2)解:当b=3cm, a-2b=20-6=14cm,ba-2b2=3×142=588cm3当b=4,a-2b=20,8=12cm,ba-2b2=4×122=576cm3故答案为:588;576.(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.故选择C.(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积最大588cm3故答案为3,588.(5)根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;当x=3,5时,ba-2b2=3.5×(20-2×3.5)2=591.5cm3,时,ba-2b2=3.25×(20-2×3.25)2=592.3125cm3,时,ba-2b2=3.375×(20-2×3.375)2=592.5234375cm3,当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.【点睛】本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.5、(1)15;(2)900;(3)10;(4)10分钟或分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间(分);(4)如图,设直线AB所在解析式为把点代入可得:∴解析式为时,设直线CD所在解析式为把点代入得,,解得∴解析式为时,∴爷爷在出发后10分钟或分钟离家450m【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键. 

    相关试卷

    冀教版八年级下册第二十章 函数综合与测试课后复习题:

    这是一份冀教版八年级下册第二十章 函数综合与测试课后复习题,共23页。

    初中数学冀教版八年级下册第二十章 函数综合与测试同步达标检测题:

    这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步达标检测题,共21页。

    数学八年级下册第二十章 函数综合与测试同步达标检测题:

    这是一份数学八年级下册第二十章 函数综合与测试同步达标检测题,共21页。试卷主要包含了下列图象表示y是x的函数的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map