冀教版八年级下册第二十章 函数综合与测试课堂检测
展开这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共22页。
冀教版八年级数学下册第二十章函数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )
A. B.
C. D.
2、小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是( )
A.小斌的速度为700m/min B.小川的速度为200m/min
C.a的值为280 D.小川家距离学校800m
3、在函数中,自变量x的取值范围是( )
A. B. C. D.
4、周六早上,小王和小李相约晨跑,他们约定从各自的家出发,在位于同一直线上的公园大门见面,小王先出发,途中等了1分钟红绿灯,然后以之前的速度继续向公园大门前行,小李比小王晚1分钟出发,结果比小王早1分钟到达,两人均匀速行走.下图是两人距离公园的路程与小王行走的时间之间的函数关系图象,若点A的坐标是,则下列说法中,错误的是( )
A.点A代表的实际意义是小李与小王相遇 B.当小李出发时,小王与小李相距120米
C.小李家距离公园大门的路程是560米 D.小李每分钟比小王多走20米
5、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为(千米),速度为(千米/分),时间为(分)下列函数图象能表达这一过程的是( )
A. B.
C. D.
6、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:( )
A.该游泳池内开始注水时已经蓄水100m3
B.每小时可注水190m3
C.注水2小时,游泳池的蓄水量为380m3
D.注水2小时,还需注水100m3,可将游泳池注满
7、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是( )
A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x
8、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )
A. B.
C. D.
9、函数y=中的自变量x的取值范围是( )
A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠0
10、中考体育篮球运球考试中,测试场地长20米,宽7米,起点线后5米处开始设置10根标志杆,每排设置两根,各排标志杆底座中心点之间相距1米,距两侧边线3米,假设某学生按照图1路线进行单向运球,运球行进过程中,学生与测试老师的距离y与运球时间x之间的图象如图2所示,那么测试老师可能站在图1中的位置为( )
A.点A B.点B C.点C D.点D
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数 的定义域是________.
2、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.
3、甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号)
4、定义:用_______来表示函数关系的方法叫做图象法.
图象法能形象直观地表示函数的变化情况,但只能近似的表达两个变量之间的函数关系.
5、判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有_________确定的值与它对应.
三、解答题(5小题,每小题10分,共计50分)
1、某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.
(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;
(2)当x=4、x=8时,购买款分别是多少元?
2、如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家,其中表示时间,表示小明离他家的距离,根据图象回答问题:
(1)菜地离小明家 km;
(2)小明走到菜地用了 min;
(3)小明给菜地浇水用了 min;
(4)小明从菜地到玉米地走了 km;
(5)小明从玉米地走回家平均速度是 km/min.
3、 “漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x表示漏水时间,y表示壶底到水面的高度.下页哪个图象适合表示y与x的对应关系?(不考虑水量变化对压力的影响.)
4、如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y/cm | 5.0 | 3.3 | 2.0 | 1.1 | 0.4 |
| 0.3 | 0.4 | 0.3 | 0.2 | 0 |
补全表格上相关数值.
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为 cm.
5、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整
(1)函数的自变量的取值范围是
(2)下表是与的几组对应值
… | … | ||||||||||||
… | … |
求的值
(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象
(4)进一步探究发现该函数的性质:当 时,随的增大而增大
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据容器的形状可知当液面高度越高时,体积的变化越小,即随着的增大,增大的速度变缓,结合选项即可求解
【详解】
解:容器的形状可知,底部最大,刚开始当增大时,体积增大较快,但随着的增大,增大的速度变缓,表现出的函数图象即为:函数图象先陡,后缓,结合选项只有B选项符合题意;
故选B
【点睛】
本题考查了函数图象的判断,根据容器的形状以及题意判断函数图象先陡,后缓是解题的关键.
2、C
【解析】
【分析】
根据路程÷时间求速度可判断A、B;利用小川继续行走的时间×小川的速度求出a的值,可判断C;利用开始 小斌与小川的距离-小斌到学校的距离可判断D.
【详解】
解:∵小斌家离学校有2800米,出发4分钟后到学校,
∴v小斌=,故选项A正确;
∵小川家离学校有3600-2800=800米,出发4分钟后到学校,
∴v小川=,故选项B正确;
小川继续前行,小斌在学校取好书包后,4分钟后掉头回家,
小川行走的路程为:200m/min×(8-4)=800m,
∴a的值为800m,故选项C不正确;
∵小川家离学校有3600-2800=800米,故选项D正确.
故选C.
【点睛】
本题考查行程问题函数图像信息获取与处理,理解图像横纵轴的意义,折点的含义,终点位置的意义,掌握函数图像信息获取与处理的方法,理解图像横纵轴的意义,折点的含义,终点位置的意义是解题关键.
3、C
【解析】
【分析】
根据二次根式和分式有意义的条件列出不等式即可求解.
【详解】
解:根据题意可列不等式组为,
解得,,
故选:C.
【点睛】
本题考查了二次根式和分式有意义的条件,解题关键是明确二次根式被开方数大于或等于0,分母不得0.
4、C
【解析】
【分析】
根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,可判断A选项;根据小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,路程为420米,可得小王的速度,小李到目的地用时6分钟,从A点到终点用时1.5分钟,路程为120米,可得小李的速度,然后根据路程、速度、时间的关系可得小李家离公园大门的路程,判断C选项;由两人的速度可判断D选项;最后依据两人的行走过程判断B选项即可.
【详解】
解:根据函数图象可得:小王和小李的函数直线相交,表示小李追上小王,恰好相遇,故A选项正确;
由题意,小王从开始到目的地一共用时8分钟,中间停留1分钟,用时7分钟,
小王的速度为:(米/分);
小李到目的地用时:(分钟),从A点到终点用时:(分钟),路程为120米,
∴小李的速度为:(米/分);总路程为:(米),
∴小李家离公园大门的路程为480米,故C选项错误;
,小李每分钟比小王多走20米,故D选项正确;
当小李出发时,小王已经出发1分钟,走过的路程为:(米),
剩余路程为:(米),
小李距离目的地路程为480(米),
两人相距:(米),故B选项正确;
综合可得:C选项错误,A、B、D正确,
故选:C.
【点睛】
题目主要考查根据实际行走函数图象获取信息,利用速度、时间、路程的关系结合图象求解是解题关键.
5、C
【解析】
【分析】
因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.
【详解】
解:∵400×5=2000(米)=2(千米),
∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,
而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,
故排除选项A与B;
又∵回到原出发地”表示终点的纵坐标为0,
∴排除选项D,
故选:C.
【点睛】
本题考查了函数的图象,解题的关键是理解函数图象的意义.
6、B
【解析】
【分析】
根据图象中的数据逐项判断即可解答.
【详解】
解:A、由图象可知,当t=0时,y=100,即该游泳池内开始注水时已经蓄水100m3,正确,故选项A不符合题意;
B、由(380-100)÷2=140(m3),即每小时可注水140m3,故选项B错误,符合题意;
C、由图可知,注水2小时,游泳池的蓄水量为380m3,正确,故选项C不符合题意;
D、由图象可知,480-380=100(m3),即注水2小时,还需注水100m3,可将游泳池注满,正确,不符合题意,
故选:B.
【点睛】
本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.
7、C
【解析】
【分析】
先用x表示出矩形的长,然后根据矩形的面积公式即可解答.
【详解】
解:设矩形的宽为xcm,则长为(x+3)cm
由题意得:S=x(x+3)=x2+3x.
故选C.
【点睛】
本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.
8、D
【解析】
【分析】
根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.
【详解】
解:由题意可得,
当时,,
∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,
∴托运费y与物品重量x之间的函数图像为:
故选:D.
【点睛】
此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.
9、D
【解析】
【分析】
根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.
【详解】
解:由题意得:x+1≥0且x≠0,
解得:x≥-1且x≠0,
故选:D.
【点睛】
本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.
10、B
【解析】
【分析】
由题意根据图2可得学生与测试老师的距离的变化情况,进而即可作出判断.
【详解】
解:根据图2得:学生与测试老师的距离先快速减小,然后短时间缓慢减小,然后再快速减小,又短时间缓慢增大,然后再快速减到最小,又开始快速增大,再减小,而且开始的时候与测试老师的距离大于快结束的时候,由此可得测试老师可能站在图1中的位置为点B.
故选:B.
【点睛】
本题考查动点问题的函数图象,利用观察学生与测试老师之间距离的变化关系得出函数的增减性是解题的关键.
二、填空题
1、x≠-1
【解析】
【分析】
根据分母不为零,即可求得定义域.
【详解】
解:由题意,
即
故答案为:
【点睛】
本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.
2、
【解析】
【详解】
解:∵长方形的周长为20,一条边为x,
∴长方形的另一条边为,
∴ .
故答案为:.
【点睛】
本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.
3、④
【解析】
【分析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故答案为:④.
【点睛】
本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
4、图象
【解析】
略
5、唯一
【解析】
略
三、解答题
1、(1)y=;(2)60元,114元
【解析】
【分析】
(1)根据题意分段列出函数表达式即可;
(2)根据(1)的结论,将x=4、x=8代入函数解析式即可求得答案.
【详解】
解:(1)由题意可得,
当0<x≤6时,y=15x,
当x>6时,y=15×6+(x﹣6)×15×0.8=12x+18,
由上可得,y与x的函数关系式为:
y=;
(2)当x=4时,y=15×4=60,
当x=8时,y=12×8+18=114,
答:当x=4,x=8时,货款分别为60元,114元.
【点睛】
本题考查了列函数解析式,已知自变量的值求函数值,根据题意列出函数解析式是解题的关键.
2、 (1)1.1
(2)15
(3)10
(4)0.9
(5)0.08
【解析】
【分析】
结合已知、图象逐一进行分析即可解题.
(1)
解:由图象可知:
菜地离小明家1.1千米
故答案为:1.1;
(2)
由图象可知:
小明从家到菜地用了15分钟
故答案为:15;
(3)
由图象可知:
小明给菜地浇水用了(分钟)
故答案为:10;
(4)
由图象可知:
小明从菜地到玉米地走了(千米)
故答案为:0.9;
(5)
由图象可知:
玉米地离小明家2千米,小明从玉米地走回家的平均速度为:.
3、图(2)
【解析】
【分析】
根据题意,可知y随x的增大而减小,符合一次函数图象,从而可以解答本题.
【详解】
解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,
∴y随x的增大而匀速的减小,符合一次函数图象,
∴图象(2)适合表示y与x的对应关系.
【点睛】
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
4、(1)0;(2)见详解;(3)1.7
【解析】
【分析】
(1)由题意认真按题目要求测量BD、CE,进行填表即可;
(2)根据题意按照表格描点作图即可;
(3)由题意线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
解:(1)根据题意测量约0,
故答案为:0;
(2)根据题意画图:
(3)当线段BD是线段CE长的2倍时,得到y=x图象,该图象与(2)中图象的交点即为所求情况,测量得BD长约1.7cm.
故答案为:1.7.
【点睛】
本题考查函数作图和学生函数图象实际意义的理解,同时考查学生由数量关系得到函数关系的转化思想.
5、 (1)全体实数
(2)1
(3)图像见解析
(4)>2
【解析】
【分析】
(1)根据题目中的函数解析式,可以得到x的取值范围;
(2)将x=4代入函数解析式,即可得到y的值;
(3)根据表格中的数据,可以画出相应的函数图象;
(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.
(1)
函数的自变量x的取值范围是全体实数,
故答案为:全体实数;
(2)
当x=4时,,
即m的值是1;
(3)
如下图所示,
(4)
由图象可得,
当x>2时,y随x的增大而增大,
故答案为:>2.
【点睛】
本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份初中冀教版第二十章 函数综合与测试课时练习,共25页。试卷主要包含了小明家,函数的自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试一课一练,共25页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试习题,共27页。试卷主要包含了函数y=的自变量x的取值范围是,如图,点A的坐标为等内容,欢迎下载使用。