冀教版八年级下册第二十章 函数综合与测试课后复习题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试课后复习题,共22页。
冀教版八年级数学下册第二十章函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣32、下列曲线中,表示y是x的函数的是( )A. B.C. D.3、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是y,y随着这个数x的变化而变化,y与x之间的关系4、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )A. B.C. D.5、甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )A. B.C. D.6、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.67、甲、乙两人沿同一条路从地出发,去往100千米外的地,甲、乙两人离地的距离(千米)与时间(小时)之间的关系如图所示,以下说法正确的是( )A.甲的速度是 B.乙的速度是C.甲乙同时到达地 D.甲出发两小时后两人第一次相遇8、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米9、下列各图中,不能表示y是x的函数的是( )A. B.C. D.10、变量x与y之间的关系是,当时,自变量x的值是( )A.13 B.5 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.2、函数中,自变量x的取值范围是______.3、已知函数,当时,_______;当时,_______.4、在函数中,自变量的取值范围是______.5、函数y=中自变量x的取值范围是______.三、解答题(5小题,每小题10分,共计50分)1、已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是 ;(2)函数y的取值范围是 ;(3)当x= 时,函数有最大值为 ;(4)当x的取值范围是 时,y随x的增大而增大.2、用描点法画出函数y=x+2的图象.3、将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为. (1)根据图,将表格补充完整:白纸张数纸条长度 (2)设张白纸黏合后的总长度为,则与之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为吗?为什么?4、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x……-4-3-2-101234567……y……a4b……(1)请直接写出上述表中、的值:a= ,b= ;(2)请在给出的图中补全该函数的大致图象;(3)请根据这个函数的图象,写出该函数的一条性质: ;(4)已知函数的图象如图所示,在的范围内,请直接不等式的解集: .(保留一位小数,误差不超过0.2).5、有这样一个问题:探究函数的图象与性质小明根据学习函数的经验,对函数的图象与性质进行了探究:下面是小明的探究过程,请补充完整(1)函数的自变量的取值范围是 (2)下表是与的几组对应值…………求的值(3)如图,在坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象(4)进一步探究发现该函数的性质:当 时,随的增大而增大 -参考答案-一、单选题1、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.2、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.3、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,∴,对于每一个确定的x,y都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.4、B【解析】【分析】运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.5、C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.6、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.7、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是,故选项符合题意;乙的速度为:,故选项不符合题意;甲先到达地,故选项不符合题意;甲出发小时后两人第一次相遇,故选项不符合题意;故选:A.【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.8、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.9、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.10、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.二、填空题1、2【解析】【分析】点P在点D时,设正方形的边长为a,a×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.【详解】解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为a,y=AB×AD=a×a=18,解得a=6;当点P在点C时,由图象可知三角形APE的面积为12,y=EP×AB=×EP×6=12,解得EP=4,即EC=4,∴BE=6-4=2,故答案是:2.【点睛】本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.2、【解析】【分析】函数表达式是分式时,考虑分式的分母不能为0,可得答案;【详解】由题意得:解得故答案为.【点睛】本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3、 3 【解析】【分析】分别将和代入解析式,即可求解.【详解】解:当时,;当时, ,解得: .故答案为:3; .【点睛】本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.4、全体实数【解析】【分析】根据整式函数的自变量不受限制即可求解【详解】解:∵函数是整式函数,自变量不受限制,∴自变量x的取值范围是全体实数.故答案为全体实数.【点睛】本题考查函数自变量的取值范围,掌握整式函数不受限制,分式函数要求分母不为0,根式函数要求被开方式有意义,零指数函数要求底数不为0是解题关键.5、x1且x-3【解析】【分析】根据分母不为0,被开方数大于等于0,进行计算即可.【详解】解:由题意得:1-x0,且x+30,∴x1且x-3,三、解答题1、 (1)-4≤x≤3(2)-2≤y≤4(3)1;4(4)-2≤x≤1【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.(1)观察函数图象得:自变量x的取值范围是-4≤x≤3;故答案为:-4≤x≤3;(2)观察函数图象得:函数y的取值范围是-2≤y≤4;故答案为:-2≤y≤4;(3)观察函数图象得:当x=1时,函数有最大值为4;故答案为:1,4;(4)观察函数图象得:当x的取值范围是-2≤x≤1时,y随x的增大而增大.;故答案为:-2≤x≤1【点睛】本题考查了函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题的关键.2、见解析【解析】【详解】解:列表、描点、连线后得到的图象,如图所示.3、(1) , ;(2);(3)不可能,理由见解析【解析】【分析】(1)理解题意分别求得白纸张数为2和5时的长度即可;(2)根据题意,找到等量关系,列出式子即可;(3)将代入,求解,判断是否为正整数,即可求解.【详解】解:(1)由题意可得,白纸张数为2时,长度为当白纸张数为5时,长度为故答案为:,;(2)当白纸张数为张时,长度故答案为不可能.理由:将代入,得,解得.因为为整数,所以总长度不可能为.【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.4、(1),;(2)图像见解析;(3)函数图像与x轴没有交点,且函数值都大于0(答案不唯一);(4)【解析】【分析】(1)将x=0,3分别代入解析式即可得y的值,即可求出a、b的值;(2)描点、连线即可;(3)观察函数图象即可求得;(4)观察函数图像,先确定的范围内的交点,再由上下位置比较大小即可.【详解】(1)把代入解析式得;把代入解析式得故答案为:,;(2)函数图像如图:(3)由函数图像可知:函数图像与x轴没有交点,且函数值都大于0(答案不唯一)(4)由图象可知:在的范围内的解集为.【点睛】本题主要考查函数的图象和性质,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.5、 (1)全体实数(2)1(3)图像见解析(4)>2【解析】【分析】(1)根据题目中的函数解析式,可以得到x的取值范围;(2)将x=4代入函数解析式,即可得到y的值;(3)根据表格中的数据,可以画出相应的函数图象;(4)根据函数图象,可以写出当x为何值时,y随x的增大而增大.(1)函数的自变量x的取值范围是全体实数,故答案为:全体实数;(2)当x=4时,,即m的值是1;(3)如下图所示,(4)由图象可得,当x>2时,y随x的增大而增大,故答案为:>2.【点睛】本题考用描点法画函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步达标检测题,共19页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试巩固练习,共21页。试卷主要包含了下图中表示y是x函数的图象是,函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版第二十章 函数综合与测试习题,共21页。