![2022年最新冀教版八年级数学下册第二十章函数同步测试试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12765361/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数同步测试试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12765361/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数同步测试试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12765361/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十章 函数综合与测试综合训练题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试综合训练题,共25页。试卷主要包含了如图,点A的坐标为等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的对应关系如图所示.以下有四个推断:①月上网时间不足35小时,选择方式A最省钱;②月上网时间超过55小时且不足80小时,选择方式C最省钱;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.所有合理推断的序号是( )A.①② B.①③ C.①③④ D.②③④2、小明家、公园、图书馆依次在一条直线上,周末,小明和妈妈准备去公园放风筝,但是因为小明要先去图书馆还书,所以他们同时从家出发,并约定2小时后在公园碰头.小明先骑自行车匀速前往图书馆,到达图书馆还书后按原路原速返回公园并按照约定时间准时到达公园,妈妈则匀速步行前往公园,结果迟到半小时.如图是他们离家的距离y(km)与小明离家时间x(h)的函数图象,下列说法中错误的是( )A.小明骑车的速度是20km/hB.小明还书用了18minC.妈妈步行的速度为2.4km/hD.公园距离小明家8km3、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D→A作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )A. B.C. D.4、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.5、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x的函数关系的图像大致是( )A. B.C. D.6、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )A.1个 B.2个 C.3个 D.4个7、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)8、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )A. B. C. D.9、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠010、某商场降价销售一批名牌球鞋,已知所获利润y(元)与降价金额x(元)之间满定函数关系式y=﹣x2+50x+600,若降价10元,则获利为( )A.800元 B.600元 C.1200元 D.1000元第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.2、周末,小明骑车从家前往公园,中途休息了一段时间.他从家出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.对于下列说法:①小明中途休息了2分钟;②小明休息前的骑车速度为每分钟400米;③小明所走的路程为4400米;④小明休息前的骑车速度小于休息后的骑车速度.其中正确结论的序号是____.3、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿以1cm/s的速度匀速运动到终点.图2是点运动时,的面积y(cm2)随时间x(s)变化的全过程图象,则的长度为________cm.4、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.5、已知,(a),那么__.三、解答题(5小题,每小题10分,共计50分)1、在一定限度内(所挂物体重量不过)弹簧挂上物体后会伸长,测得一弹簧长度与所挂物体质量有如下关系:所挂物体质量弹簧长度(1)由表格知,弹簧原长为________,所挂物体每增加弹簧伸长________.(2)请写出弹簧长度与所挂物体质量之间的关系式,并指出自变量取值范围.(3)预测当所挂物体质量为时,弹簧长度是多少?(4)当弹簧长度为时,求所挂物体的质量.2、下列各曲线中哪些表示y是x的函数?3、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);01.02.03.04.05.06.07.08.06.35.4 3.7 2.52.42.73.3(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当取最小值时,的值约为 .(结果保留一位小数)②当是等腰三角形时,的长度约为 .(结果保留一位小数)4、用列表法与解析式法表示n边形的内角和m(单位:度)关于边数n的函数.5、如图是某一天北京与上海的气温随时间变化的图象.(1)这一天内,上海与北京何时气温相同?(2)这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低? -参考答案-一、单选题1、C【解析】【分析】根据A,B,C三种上宽带网方式的月收费金额yA(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.【详解】由图象可知:①月上网时间不足35小时,选择方式A最省钱,说法正确;②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;所以所有合理推断的序号是①③④.故选:C.【点睛】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.2、D【解析】【分析】根据小明1小时到达图书馆,图书馆距离家20千米,求出小明骑车的速度判断A选项;根据小明还书用了0.3小时判断B选项;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2列出方程求出方程的解来判断C选项;根据妈妈的速度×妈妈所用的时间求公园距离小明家的距离来判断D选项.【详解】解:观察图象可知,小明1小时到达图书馆,图书馆距离家20千米,小明骑车的速度是20千米/小时,故A选项不符合题意;1.3﹣1=0.3(小时)=18(分),故B选项不符合题意;设妈妈的速度为a千米/小时,根据小明走的路程+妈妈走的路程=20×2得:2.5a+20×(2﹣1.7)=20×2,解得a=2.4,故C选项不符合题意;2.4×2.5=6(千米),故D选项符合题意;故选:D.【点睛】本题考查了函数的图象,求出妈妈的速度是解题的关键.3、B【解析】【分析】运用动点函数进行分段分析,当P在BC上,P在CD上以及P在AD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×BP=×2x=x;因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);点P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S=×AB×AP=×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.4、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.5、A【解析】【分析】先作出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中, ∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.6、B【解析】【分析】根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.【详解】解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;根据函数图像可知乙比甲迟出发0.5小时,故③正确,根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;故选B.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.7、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.8、D【解析】【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.9、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10、D【解析】【分析】将代入函数关系式即可得.【详解】解:将代入得:,即获利为1000元,故选:D.【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.二、填空题1、1.5或5或9【解析】【分析】分为两种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P在AC上.∵中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵的面积等于6,∴=AP•CE=AP×4=6.∵AP=3,∴t=1.5.如图2,当点P在BC上.则t>3∵E是DC的中点,∴BE=CE=4.∴=EP•AC=EP×6=6, ∴PE=2,∴t=5或t=9.总上所述,当t=1.5或5或9时,的面积会等于6.故答案为:1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2、①②##②①【解析】【分析】根据函数图象可知,小明4分钟所走的路程为1600米,分钟休息,分钟骑车米,骑车的总路程为2800米,根据路程、速度、时间的关系进行解答即可.【详解】解:①、根据图象可知,在4~6分钟,路程没有发生变化,所以小明中途休息的时间为:6﹣4=2分钟,故正确;②、根据图象可知,当t=4时,s=1600,所以小明休息前骑车的平均速度为:1600÷4=400(米/分钟),故正确;③、根据图象可知,小明在上述过程中所走的路程为2800米,故错误;④、小明休息后的骑车的平均速度为:(2800﹣1600)÷(10﹣6)=300(米/分),小明休息前骑车的平均速度为:1600÷4=400(米/分钟),400>300,所以小明休息前骑车的平均速度大于休息后骑车的平均速度,故错误;综上所述,正确的有①②.故答案为①②.【点睛】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进而解决问题.3、3【解析】【分析】当点P在点D时,设正方形的边长为acm,然后根据函数图象可得a的值,当点P在点C时,进而根据函数图象及三角形面积公式可进行求解.【详解】解:由题意得:当点P在点D时,设正方形的边长为acm,则有,解得:;当点P在点C时,则有,解得:;故答案为3.【点睛】本题主要考查动点函数图象问题,解决问题的关键是弄清楚不同时间段,图象与图形的对应关系.4、1760【解析】【分析】根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.【详解】解:小明离家2分钟走了160米,∴小明初始速度为160÷2=80米/分;小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;小明在家换衣服3分钟时间,妈妈走了40×3=120米,设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,则有160t=1200+120+40t,∴t=11,∴小明离家距离为11×160=1760米.故答案为:1760米.【点睛】本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.5、【解析】【分析】由(a),建立方程,再解方程并检验可得答案.【详解】解:因为,所以(a),所以: 解得,经检验是方程的解,故答案为:.【点睛】本题考查的是已知函数值,求解自变量的值,分式方程的解法,理解题意得到方程是解本题的关键.三、解答题1、(1)12,0.5;(2),;(3);(4)【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加弹簧伸长的长度;(2)由(1)中的结论可求出弹簧长度与所挂物体质量之间的函数关系式;(3)令,求出y的值即可;(4)令,求出x的值即可.【详解】解:(1)由表格可知,所挂物体质量时,弹簧长度为,∴弹簧原长为,∵,∴所挂物体每增加弹簧伸长;(2)由(1)可知:弹簧长度与所挂物体质量之间的函数关系式为,∵所挂物体质量不过,∴自变量x的取值范围是;(3)将代入,得,∴当所挂物体质量为时,弹簧长度是;(4)将代入,得,解得:,∴当弹簧长度为时,物体质量是.【点睛】本题考查了函数的关系式及函数值,解题的关键是根据图表信息解决问题.2、图(1)(2)(3)中y是x的函数【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可得出结论.【详解】解:图(1)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(2)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数; 图(3)对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;图(4)对于一部分自变量x的值,y有两个值与之相对应, y不是x的函数;故图(1)(2)(3)中y是x的函数【点睛】本题主要考查了函数概念,关键是掌握注意对函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.3、故答案为:0.0【点睛】本题考查函数图象的应用,是基础考点,掌握相关知识是解题关键.8.(1)4.5,3.0;(2)见解析;(3)①5.8;②3.3或6.3【解析】【分析】(1)利用测量方法得到答案;(2)利用描点法作图;(3)①通过测量解答;②根据等腰三角形的定义画出图象,并测量x及y的值,由此得到答案.(1)解:通过取点、画图、测量可得时,,时,,故答案为:4.5,3.0;(2)解:利用描点法,图象如图所示.(3)①由函数图象得,当取最小值时,的值约为;②当是等腰三角形时,有两种情况,如图:时,,,由函数图象得,时,,当是等腰三角形时,的长度约为3.3或.故答案为:①5.8;②3.3或6.3.【点睛】本题考查函数综合题、描点法画函数图象等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考常考题型.4、列表法见解析,且n为整数【解析】【分析】从一点和边上的其他点连接分成三角形的个数为点数减去2,也就是边数减2,由于三角形的内角和是180°,所以多边形内角和与它的边数关系为多边形内角和=(边数﹣2)×180°,由此规律计算即可求解.【详解】解:图 例…n边形边 数n345…n内角和m/度180=180×(3﹣2)360=180×(4﹣2)540=180×(5﹣2)…180×(n﹣2) 故n边形的内角和m(单位:度)关于边数n的函数为m=180°(n﹣2),(n≥3且n为整数).【点睛】本题考查了函数的表达形式,函数的表达形式有列表法、图像法以及解析式法,熟练掌握多边形内角和的推导过程是解决本题的关键.5、(1)7时,12时;(2)0~7时,12~24时上海气温高,7~12时上海气温低【解析】【分析】(1)根据题意,上海与北京气温相同就是函数图象中重合的部分,就可得出答案;(2)上海比北京气温高就是上海的图象在北京图象的上方,根据图象,就可得出答案;上海比北京气温低就是上海的图象在北京图象的下方,根据图象,就可得出答案.【详解】解:(1) 根据图象,可得到上海和北京在7时和12时,图象重合,故这一天内,上海与北京7时和12时气温相同.(2)根据图象,上海的图象在北京图象的上方的时间段为:0时至7时和12时至24时,故0时到7时和12时到24时,上海的气温比北京的高;根据图象,可得到7时至12时,上海的图象在北京的下方,故7时至12时,上海的气温比北京低.【点睛】本题考查函数图象,做题的关键是从函数图象中得到有效信息,分析解答即可.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试当堂检测题,共20页。试卷主要包含了在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共22页。试卷主要包含了小斌家,如图,点A的坐标为等内容,欢迎下载使用。
这是一份2021学年第二十章 函数综合与测试课时作业,共25页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)