初中数学冀教版八年级下册第二十章 函数综合与测试课时练习
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时练习,共22页。
冀教版八年级数学下册第二十章函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)2、某天早晨,小明离家跑步到公园锻炼一会后又回到家里.下面图像中,能反映小明离家的距离y和时间x的函数关系的是( )A. B.C. D.3、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x4、下列各曲线中,不表示y是x的函数的是( )A. B.C. D.5、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )A.1个 B.2个 C.3个 D.4个6、甲、乙两辆摩托车分别从A、B两地出发相向而行,图中、分别表示两辆摩托车与A地的距离与行驶时间之间的函数关系,则下列说法:①A、B两地相距;②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢;④两车出发后,经过0.3小时,两车相遇.其中正确的有( )A.4个 B.3个 C.2个 D.1个7、下列四个图象中,能表示y是x的函数的是( )A. B.C. D.8、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是( ).A.小博的迹度为180米/分B.爸爸的速度为270米/分C.点C的坐标是D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米9、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )A.两人前行过程中的速度为180米/分 B.的值是15,的值是2700C.爸爸返回时的速度为90米/分 D.运动18分钟或31分钟时,两人相距810米10、在函数中,自变量x的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米.2、小明使用图形计算器探究函数的图象,他输入了一组,的值,得到了如图的函数图象,由学习函数的经验,可以推断出小明输入的__0,__0.(填“”,“”或“” 3、下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么( )分钟后两人首次相遇.4、在一个变化过程中,数值发生变化的量为_____.在一个变化过程中,数值始终不变的量为_____.在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.5、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)三、解答题(5小题,每小题10分,共计50分)1、小明某天上午时骑自行车离开家,时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)时和时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)时到时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?2、某客运公司的行李托运收费标准为:行李是千克,收费为元(不足千克的按千克计),以后每增加千克需要增加相同的费用.行李质量/千克托运费/元 (1)完成上面表格;(2)写出行李托运费(元)与行李质量(千克)的关系式.3、小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182226303438(1)上表所反映的变化过程中的两个变量,______是自变量,______是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式______;(3)当弹簧长度为50cm(在弹簧承受范围内)时,求所挂重物的质量.(写出求解过程)4、甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.5、一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示)与x之间的函数关系.根据图象进行以下探究:[信息读取](1)甲,乙两地相距______千米,两车出发后______小时相遇;(2)普通列车到达终点共需______小时,普通列车的速度是______千米/小时:[解决问题](3)求动车的速度:(4)求点C的坐标. -参考答案-一、单选题1、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.2、D【解析】略3、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、D【解析】【分析】根据函数的意义进行判断即可.【详解】解:A、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;B、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;C、图中,对于的每一个取值,都有唯一确定的值与之对应,选项不符合题意;D、图中,对于的每一个取值,可能有两个值与之对应,选项符合题意.故选:D.【点睛】本题主要考查了函数的定义,解题的关键是掌握函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.5、B【解析】【分析】根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.【详解】解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;根据函数图像可知乙比甲迟出发0.5小时,故③正确,根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;故选B.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.6、B【解析】【分析】根据从B到A共行驶的路程可判断①;求出乙车行驶时间,甲车行驶时间,根据减法求出时间差可判断②;根据时间与路程,求出甲乙两车的速度,根据减法求出速度差可判断③;设两相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,根据甲乙共走全程列方程,求出时间t可判断④.【详解】解:乙从B地到A共行走24km,故①A、B两地相距正确; 乙摩托车从B到A地用0.5h,甲摩托车从A地到B地用0.6h,∴0.6-0.5=0.1h,故②甲车比乙车行完全程多用了0.1小时正确;甲摩托车行驶的速度为24÷0.6=40km/h,乙摩托车行驶的速度为24÷0.4=48km/h,∴48-40=8km/h,故③甲车的速度比乙车慢正确;设两车相遇时间为th.甲车行驶40tkm,乙车行驶48tkm,∴40t+48t=24,解得h,故④两车出发后,经过0.3小时,两车相遇不正确.故选择B.【点睛】本题考查从行程图像获取信息和处理信息,看懂函数图像,列一元一次方程,时间差,速度差,掌握相关知识是解题关键.7、A【解析】【分析】根据“在一个变化过程中,如果有两个变量x、y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数”,由此可排除选项.【详解】解:选项A符合函数的概念,而B、C、D都不符合“对于x的每一个确定的值,y都有唯一确定的值与其对应”,故选A.【点睛】本题主要考查函数的定义,熟练掌握函数的定义是解题的关键.8、C【解析】【分析】根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.【详解】解:∵小博出发5分钟后行驶900米,∴小博的迹度为=180米/分,故选项A正确; 爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,15×180=10x,解得:x=270米/分,∴故选项B正确;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,∴点C(25,4500),故选项C不正确,设爸爸出发时间为t分钟时,两者之间距离为800米,(5+t)180-270t=800或(180+270)×(t-10)=800,解得:分钟或分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选C.【点睛】本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.9、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知∴故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.二、填空题1、50【解析】【分析】根据总路程÷回家用的时间即可求解.【详解】解:小明回家用了15-5=10分钟,总路程为500,故小明回家的速度为:500÷10=50(米/分),故答案为50.【点睛】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.2、 【解析】【分析】由图象可知,当时,,可知;根据函数解析式自变量的取值范围可以知道,结合图象可以知道函数的取不到的值大概是在1的位置,所以大概预测可以得约为1,也即.【详解】解:由图象可知,当时,,;,结合图象可以知道函数的取不到的值大概是在1的位置,.故答案为:,.【点睛】本题考查函数的图象,解题的关键是能够通过已学的反比例函数图象确定的取值.3、10【解析】【分析】先根据函数图象求出王刚和李明的速度,再根据关系式:路程=速度差×追及时间,列出方程解答即可.【详解】解:根据图象可得:王刚的速度为:(米/分)李明的速度为:(米/分)设x分钟后两人首次相遇,根据题意得, 解得, 所以,10分钟后两人首次相遇.故答案为:10【点睛】此题主要考查了函数图象以及一元一次方程的应用,找出等量关系列出方程是解答本题的关键.4、 变量 常量 变化【解析】略5、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.三、解答题1、(1)时间、离家的距离,自变量是时间,因变量是离家的距离;(2)15千米、30千米;(3)12:00,30千米;(4)15千米,(5)12:00-13:00;(6)15千米/小时.【解析】【分析】(1)根据图象的x轴和y轴即可确定表示了哪两个变量的关系;(2)由函数图像可以看出10时的时候他离家的距离是15千米,12时的时候他离家30千米;(3)首先根据图象找到离家最远的距离,由此即可确定他到达离家最远的地方是什么时间,离家多远;(4)根据图象首先找到时间为10时和12时离家的距离,然后作差即可;(5)如果休息,那么距离没有增加,由此就可以确定在哪段时间内休息,并吃午餐;(6)根据返回时所走路程和使用时间即可求出返回时的平均速度.【详解】解:(1)图像表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量; (2)由函数图像可以看出10时的时候他离家的距离是15千米,13时的时候他离家30千米;(3)由图象看出他到达离家最远的地方是在12-13时,离家30千米;(4)由图象看出10时到12时他行驶了30-15=15千米; (5)由图象看出12:00~13:00时距离没变且时间较长,得他可能在12时到13时间内休息,并吃午餐;(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).【点睛】此题考查了函数的图象,解题关键在于看懂图中数据表示的实际意义.2、(1)5.6;6.4;11.2;(2)【解析】【分析】(1)由表格可知每增加1千克需增加费用为0.8元,由此可完成表格;(2)根据表格及(1)可直接进行求解.【详解】解:(1)由表格得每增加1千克需增加费用为(4.8-4)÷(2-1)=0.8元,∴当x=3时,y=(3-1)×0.8+4=5.6;当x=4时,y=(4-1)×0.8+4=6.4;当x=10时,y=(10-1)×0.8+4=11.2;故答案为5.6;6.4;11.2;(2)由(1)可得:行李托运费(元)与行李质量(千克)的关系式为.【点睛】本题主要考查函数的表示,熟练掌握函数的相关概念及表示是解题的关键.3、(1)所挂物体质量,弹簧长度;(2)y=4x+18;(3)8kg【解析】【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)利用表格中数据的变化进而得出答案;(3)由(2)中关系式,可求当弹簧长度为50cm(在弹簧承受范围内)时,所挂重物的质量.【详解】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;故答案为:所挂物体质量,弹簧长度;(2)由表格可得:当所挂物体重量为1千克时,弹簧长4厘米;当不挂重物时,弹簧长18厘米,则y与x的关系式为:y=4x+18;故答案为:y=4x+18;(3)当弹簧长度为50cm(在弹簧承受范围内)时,50=4x+18,解得x=8,答:所挂重物的质量为8kg.【点睛】本题考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.4、(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.5、(1)1800;4;(2)12;150;(3)300km/h;(4)【解析】【分析】(1)初始时刻y=1800,即为两地距离,相遇时两车距离为0,由图像得到相遇时刻;(2)最后到达的为普通列车,根据路程除以时间可得速度;(3)根据动车4小时到达,利用速度=路程÷时间求解即可;(4)由函数图像可知m时刻是动车到达乙地的时刻,用路程除以速度即可.【详解】(1)由图像可知,甲地与乙地相距1800千米,两车出发后4小时相遇;故答案为:1800,4;(2)由函数图像可知,普通列车12小时到达,则速度为1800÷12=150千米/小时故答案为:12;150;.(3)由题意得:动车的速度为: (km/h);(4),∴,,∴点的坐标为.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后测评,共26页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
这是一份数学八年级下册第二十章 函数综合与测试巩固练习,共21页。试卷主要包含了下图中表示y是x函数的图象是,函数y=的自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课时训练,共25页。