![2022年最新冀教版八年级数学下册第二十章函数专项测评试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12765333/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数专项测评试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12765333/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版八年级数学下册第二十章函数专项测评试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12765333/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后练习题,共21页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )
A.B.C.D.
2、函数中,自变量x的取值范围是( )
A.B.且C.D.且
3、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是( )
A.出租车的速度为100千米/小时B.小南追上小开时距离家300千米
C.小南到达景区时共用时7.5小时D.家距离景区共400千米
4、EF是BC的垂直平分线,交BC于点D,点A是直线EF上一动点,它从点D出发沿射线DE方向运动,当减少时,增加,则y与x的函数表达式是( )
A.B.C.D.
5、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是( )
①两人前行过程中的速度为200米/分;
②m的值是15,n的值是3000;
③东东开始返回时与爸爸相距1500米;
④运动18分钟或30分钟时,两人相距900米.
A.①②B.①②③C.①②④D.①②③④
6、A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速运动,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时,④甲在出发5小时后被乙追上.以上说法正确的个数有( )
A.1个B.2个C.3个D.4个
7、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )
A.B.
C.D.
8、下列函数中,自变量的取值范围选取错误的是( )
A.y=2x2中,x取全体实数B.y=中,x取x≠-1的实数
C.y=中,x取x≥2的实数D.y=中,x取x≥-3的实数
9、下列各图表示y是x的函数的图象是( )
A.B.
C.D.
10、三地位于同一条笔直的直线上,B在之间,甲、乙两人分别从两地同时出发赶往C地,甲、乙两人距C地的距离s(单位:m)与甲运动的时间t(单位:s)之间的关系如图所示.根据图象判断下列说法错误的是( )
A.两地之间的距离为B.甲的速度比乙快
C.甲、乙两人相遇的时间为D.时,甲、乙两人之间的距离为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数 的定义域是________.
2、定义:用_______来表示函数关系的方法叫做列表法.
列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.
3、函数中,自变量x的取值范围是______.
4、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为,一边长为,那么在60,S,a中,变量有________________个.
5、已知f(x)=,那么f()=___.
三、解答题(5小题,每小题10分,共计50分)
1、在某火车站托运物品时,不超过的物品需付2元,以后每增加(不足按计)需增加托运费0.5元,设托运(p为整数)物品的费用为c元,试写出c的计算公式.
2、汽车在发动后的前10秒内以匀加速a=0.8m/s2行驶,这10s内,经过t(s)汽车行驶的路程为s=at2.
(1)求t=2.5s和3.5s时,汽车所行驶的路程.
(2)汽车在发动后行驶10m,15m所需的时间各为多少? (精确到0.1)
3、周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:
(1)王华家到张明家的路程是多少米?
(2)王华在新华书店停留了多长时间?
(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?
(4)本次去张明家途中,王华一共行驶了多少米?
4、为了提高天然气使用效率,保障居民的用气需求,某市推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3 元/m3,
(1)根据题意,填写表:
(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式,并写出自变量的取值范围;
(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.
5、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.
(1)爷爷这一天从公园返回到家用多长时间?
(2)爷爷散步时最远离家多少米?
(3)爷爷在公园锻炼多长时间?
(4)直接写出爷爷在出发后多长时间离家450m.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据速度,时间与路程的关系得出,变形即可.
【详解】
解:根据速度,时间与路程的关系得
∴.
故选D.
【点睛】
本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.
2、B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x-2≥0且x−3≠0,
解得且.
故选:B.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
3、B
【解析】
【分析】
先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A正确;设小南t小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t)=100t,解得t=3.5,可判断B不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t+0.5)=100t,解得t=4,可判断C正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D正确.
【详解】
解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,
故选项A正确;
设小南t小时追上小开,
50(2+1+0.5+t)=100t,
解得t=3.5,
∴100×3.5=350千米,
故选项B不正确;
50(2+1+0.5+t+0.5)=100t,
解得t=4,
∴小南到达景区时共用2+1+0.5+4=7.5小时,
故选项C正确;
∵100×4=400千米,
∴家距离景区共400千米,
故选项D正确.
故选B.
【点睛】
本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.
4、B
【解析】
【分析】
根据垂直平分线的性质可得,,根据题意列出函数关系式即可
【详解】
EF是BC的垂直平分线,
是的角平分线
设,即
当减少时,则,增加,则
故选B
【点睛】
本题考查了垂直平分线的性质,三角形内角和定理,列函数关系式,掌握垂直平分线的性质,等腰三角形三线合一是解题的关键.
5、D
【解析】
【分析】
根据题意和图象中的数据可以判断各个小题中的说法是否正确,从而可以解答本题.
【详解】
解:由图可得,
两人前行过程中的速度为4000÷20=200(米/分),故①正确;
m的值是20−5=15,n的值是200×15=3000,故②正确;
爸爸返回时的速度为:3000÷(45−15)=100(米/分),
则东东开始返回时与爸爸相距:4000−3000+100×5=1500(米),故③正确;
运动18分钟时两人相距:200×(18−15)+100×(18−15)=900(米),
东东返回时的速度为:4000÷(45−20)=160(米/分),
则运动30分钟时,两人相距:1500−(160−100)×(30−20)=900米,故④正确,
∴结论中正确的是①②③④.
故选:D.
【点睛】
本题考查了从函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
6、B
【解析】
【分析】
根据甲、乙函数图像一个是直线一个不是直线即可判断①;根据甲从t=0开始出发,乙从t=0.5出发即可判断②③;根据甲、乙函数图像的交点的横坐标小于5可以判断④.
【详解】
解:由函数图像可知,甲的函数图像是一条直线,乙的函数图像不是直线,故甲是匀速运动,乙不是匀速运动,故①正确;
乙在第0.5小时出发,在第5小时到达,则乙的行进时间为5-0.5=4.5小时,故②错误;
根据函数图像可知乙比甲迟出发0.5小时,故③正确,
根据函数图像可知,当乙追上甲时,两人的行进路程相同,即在函数图像中的甲、乙函数图像的交点处乙追上甲,则乙追上甲时,甲出发的时间小于5小时,故④错误;
故选B.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
7、D
【解析】
【分析】
根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.
【详解】
解:由题意可得,
当时,,
∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,
∴托运费y与物品重量x之间的函数图像为:
故选:D.
【点睛】
此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.
8、D
【解析】
【分析】
根据分式的分母不能为0、二次根式的被开方数的非负性即可得.
【详解】
解:A、中,取全体实数,此项正确;
B、,即,
中,取的实数,此项正确;
C、,
,
中,取的实数,此项正确;
D、,且,
,
中,取的实数,此项错误;
故选:D.
【点睛】
本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.
9、D
【解析】
【详解】
解:A、不是的函数的图象,此项不符题意;
B、不是的函数的图象,此项不符题意;
C、不是的函数的图象,此项不符题意;
D、是的函数的图象,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般的,在一个变化过程中,假设有两个变量,如果对于任意一个都有唯一确定的一个和它对应,那么就称是自变量,是的函数)是解题关键.
10、C
【解析】
【分析】
根据图像上的信息逐个分析判断即可.
【详解】
根据图像可得两地之间的距离为m,
∴A选项正确,不符合题意;
根据图像可得甲的速度为,
乙的速度为,
∴,
∴甲的速度比乙快,
∴B选项正确,不符合题意;
设相遇的时间为t,
∴,解得:,
∴甲、乙两人相遇的时间为,
∴C选项错误,符合题意;
时,乙运动的路程为m,甲运动的路程为m,
∴m,
∴时,甲、乙两人之间的距离为.
∴D选项正确,不符合题意.
故选:C.
【点睛】
此题考查了实际问题的函数的图像,解题的关键是正确分析出图像中必要的信息.
二、填空题
1、x≠-1
【解析】
【分析】
根据分母不为零,即可求得定义域.
【详解】
解:由题意,
即
故答案为:
【点睛】
本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.
2、表格
【解析】
略
3、
【解析】
【分析】
函数表达式是分式时,考虑分式的分母不能为0,可得答案;
【详解】
由题意得:
解得
故答案为.
【点睛】
本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
4、2
【解析】
【分析】
根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可
【详解】
解:∵篱笆的总长为60米,
∴S=(30-a)a=30a-a2,
∴面积S随一边长a变化而变化,
∴S与a是变量,60是常量
故答案为:2.
【点睛】
本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.
5、####
三、解答题
1、(p为正整数).
【解析】
【分析】
由于p是整数,则可求c=0.5p+1.5.
【详解】
解:∵p是整数,
∴c=2+0.5(p-1)=0.5p+1.5.
【点睛】
本题考查函数的解析式;理解题意,能够根据实际问题列出正确的函数是解题的关键.
2、(1)2.5,4.9;(2)5,6.1
【解析】
【分析】
(1)根据公式,得函数解析式,根据自变量的值,得函数值.
(2)根据函数值,得相应的自变量的值.
【详解】
(1)∵s=at2,
∴s=×0.8t2=t2.
当t=2.5时,s=×2.52=2.5(m),
当t=3.5时,s=×3.52=4.9(m).
(2)当s=10时, t2=10,解得t=5(s),
当s=15时, t2=15,解得t≈6.1(s).
【点睛】
本题考查了函数值,利用了函数的自变量与函数值的对应关系.
3、(1)4800米;(2)8分钟;(3)450米/分;(4)6800米
【解析】
【分析】
(1)根据函数图象,直接可得王华家到张明家的路程;
(2)根据函数图像平行于横轴的部分即为停留的时间,据此可得王华在新华书店停留了多长时间;
(3)根据函数图象求得路程和时间,概念速度等于路程除以时间即可求得;
(4)根据函数图象可得路程为3段,将其相加即可.
【详解】
解:(1)根据函数图象,可知王华家到张明家的路程是4800米;
(2)24﹣16=8(分钟).
所以王华在新华书店停留了8分钟;
(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,
小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);
(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).
【点睛】
本题考查了函数图象,要理解横纵坐标表示的含义以及王华的运动过程,从函数图象中获取信息是解题的关键.
4、(1)375,900;(2)y=;(3)340m3.
【解析】
【分析】
(1)根据两种收费标准进行求解即可;
(2)分两种情况:①当x≤300时,②当x>300时,根据题目所给收费标准求解即可;
(3)先根据,得到,然后把y=870代入y=3x-150中进行求解即可.
【详解】
解:(1)由题意得:当一户居民的年用气量为的时候,付款金额为元,
当一户居民的年用气量为的时候,付款金额为元,
故答案为:375,900;
(2)分两种情况:
①当x≤300时,y=2.5x;
②当x>300时,y=2.5×300+3×(x-300)=3x-150.
综上所述,y关于x的解析式为y=;
(3)∵,
∴
∴将y=870代入y=3x-150,
得870=3x-150,解得x=340.
∴该户居民的年用气量为340m3.
【点睛】
本题主要考查了根据表格求函数关系式,解题的关键在于能够准确读懂题意.
5、(1)15;(2)900;(3)10;(4)10分钟或分钟
【解析】
【分析】
(1)根据图中表示可得结果;
(2)根据图象可知最远就是到公园的距离;
(3)根据图象可得平行的部分就是在公园的时间;
(4)求出相应直线的函数解析式,即可得解;
【详解】
(1)由图可知,时间为(分);
(2)由图可知,最远离家900米;
(3)爷爷在公园锻炼的时间(分);
(4)如图,设直线AB所在解析式为,
把点代入可得:,
∴解析式为,
当时,;
设直线CD所在解析式为,
把点,代入得,
,解得,
∴解析式为,
当时,;
∴爷爷在出发后10分钟或分钟离家450m.
【点睛】
本题主要考查了函数图像的应用,准确分析计算是解题的关键.
一户居民的年用气量
150
250
350
…
付款金额/元
625
…
相关试卷
这是一份数学八年级下册第二十章 函数综合与测试课时作业,共20页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课后作业题,共21页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)