搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测试练习题(无超纲)

    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测试练习题(无超纲)第1页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测试练习题(无超纲)第2页
    2021-2022学年度强化训练冀教版八年级数学下册第二十二章四边形专题测试练习题(无超纲)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试复习练习题,共26页。
    八年级数学下册第二十二章四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图①,在ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为xABP的面积为yyx的函数,函数的图象如图②所示,则图②中的a值为(  )A.3 B.4 C.14 D.182、一个多边形的每个内角均为150°,则这个多边形是(       A.九边形 B.十边形 C.十一边形 D.十二边形3、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(       A.OAOCOBOD B.ABCDAOCOC.ABCDADBC D.∠BAD=∠BCDABCD4、在下列条件中,不能判定四边形是平行四边形的是(            A.ABCDADBC B.ABCDADBCC.ABCDABCD D.ABCDADBC5、如图,平面直角坐标系xOy中,点A是直线上一动点,将点A向右平移1个单位得到点B,点C(1,0),则OBCB的最小值为(       A. B. C. D.6、一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是(       A.5 B.4 C.7 D.67、如图,在正方形ABCD中,AB=3,点EF分别在边ABCD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为(       A.1 B. C. D.28、如图,在ABCD中,对角线ACBD相交于点O,过点OOEAC,交AD于点E,连接CE,若△CDE的周长为8,则ABCD的周长为(       A.8 B.10 C.16 D.209、将一长方形纸条按如图所示折叠,,则       A.55° B.70° C.110° D.60°10、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为ab,且a2b2ab+10,那么小正方形的面积为(       A.2 B.3 C.4 D.5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,∠EAD和∠DCF是四边形ABCD的外角,∠EAD的平分线AG和∠DCF的平分线CG相交于点G.若∠Bm°,∠Dn°,则∠G=______°.(用含mn的代数式表示)2、如图,正方形ABCD的边长为4,EBC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.3、如图,在矩形中,的角平分线于点,连接恰好平分,若,则的长为______.4、如图,已知长方形ABCD中,AD=3cm,AB=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ADE的面积为_______cm25、如图,矩形ABCD中,ACBD交于点OMN分别为BCOC的中点.若MN=4,则AC的长为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,∠ADB=90°.(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MNADE,且∠C=22.5°,求证:NEAB2、如图,在中,于点E,延长BC至点F,使,连接AFDEDF(1)求证:四边形AEFD为矩形;(2)若,求DF的长.3、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.4、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交ADBCEF点,交BDO点.(2)在(1)的条件下,求证:AE=CF5、数学学习小组在学习了三角形中位线定理后,对四边形中有关中点的问题进行了探究:如图,在四边形中,EF分别是边的中点.(1)若,求的长.小兰说:取的中点P,连接.利用三角形中位线定理就能解答此题,请你根据小兰提供的思路解答此题;(2)小花说:根据小兰的解题思路得到启发,如果满足,就能得到的数量关系,你觉得小花说得对吗?若对,请你帮小花得到的数量关系,并说明理由. -参考答案-一、单选题1、A【解析】【分析】由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出CBD高,进而求解.【详解】解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,过点BBHDC于点HCH=x,则DH=8-xBH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x2=62-x2解得:则:故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.2、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.3、B【解析】4、D【解析】5、A【解析】【分析】D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,作ESx轴于S,根据题意OE就是OBCB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OSES,然后根据勾股定理即可求得OE【详解】解:设D(﹣1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD于点,作ESx轴于SAB∥DC,且ABODOC=1,∴四边形ABOD和四边形ABCO是平行四边形,ADOBOABCADOAOBBCAEADAEOAOBBCOEOBBCOBCB的最小值为OE时,解得:时,的中点,过轴的垂线交时,的中点,为等边三角形,FD=3,∠FDG=60°,DGDFDE=2DG=3,ESDEDSDEOSOEOBCB的最小值为故选:A.【点睛】本题考查了一次函数的性质,轴对称﹣最短路线问题以及平行四边形的性质、勾股定理的应用,解题的关键是证得OEOB+CB的最小值.6、D【解析】【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.7、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=xAE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,ABCD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E∴∠AEB'=180°-∠BEF-∠FEB'=60°,B'E=2AEBE=x,则B'E=xAE=3-x∴2(3-x)=x解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.8、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,OA=OCAB=CDAD=BCOEACOE是线段AC的垂直平分线,AE=CE∵△CDE的周长为8,CE+DE+CD=8,即AD+CD =8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.9、B【解析】【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.10、A【解析】【分析】由正方形1性质和勾股定理得,再由,得,则,即可解决问题.【详解】解:设大正方形的边长为大正方形的面积是18,小正方形的面积故选:A.【点睛】本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出二、填空题1、【解析】【分析】根据四边形的内角和定理可得 ,从而得到,再由∠EAD的平分线AG和∠DCF的平分线CG相交于点G.可得,进而得到,再根据 ,即可求解.【详解】解:∵∠Bm°,∠Dn°,∵∠EAD和∠DCF是四边形ABCD的外角,∵∠EAD的平分线AG和∠DCF的平分线CG相交于点G故答案为:【点睛】本题主要考查了多边形的内角和定理,角平分线的应用,补角的应用,熟练掌握多边形的内角和定理是解题的关键.2、【解析】【分析】要求PE+PC的最小值,PEPC不能直接求,可考虑通过作辅助线转化PEPC的值,从而找出其最小值求解.【详解】解:如图,连接AEPA∵四边形ABCD是正方形,BD为对角线,∴点C关于BD的对称点为点APE+PC=PE+AP根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为4,EBC边的中点,BE=2,AE=故答案为:【点睛】本题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.3、【解析】【分析】根据矩形的性质得,根据BE的角平分线,得,则,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分,等量代换得,所以,即可得.【详解】解:∵四边形ABCD为矩形,BE的角平分线,中,根据勾股定理得,EC平分故答案为:【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、6【解析】【分析】根据折叠的条件可得:,在直角中,利用勾股定理就可以求解.【详解】解:将此长方形折叠,使点与点重合,根据勾股定理可知:解得:的面积为:故答案为:【点睛】本题考查了折叠的性质,三角形的面积,矩形的性质,勾股定理,解题的关键是注意掌握方程思想的应用.5、16【解析】三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得 是等腰直角三角形,进而证明即可得证NEAB(1)如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)如图,连接四边形是平行四边形的垂直平分线中,【点睛】本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.2、 (1)见解析(2)【解析】【分析】(1)根据线段的和差关系可得BCEF,根据平行四边形的性质可得ADBCADBC,即可得出ADEF,可证明四边形AEFD为平行四边形,根据AEBC即可得结论;(2)根据矩形的性质可得AFDE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)BECFBE+CECF+CE,即BCEFABCD是平行四边形,ADBCADBCADEFADEF∴四边形AEFD为平行四边形,AEBC∴∠AEF=90°,∴四边形AEFD为矩形.(2)∵四边形AEFD为矩形,AFDE=4,DF=AEAB2+AF2BF2∴△BAF为直角三角形,∠BAF=90°,AE=【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.3、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..4、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作.(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBCEFBD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD在△EOD与△FOB中,∴△EOD≌△FOBASA),ED=BFAD-ED=BC-BF,即AE=CF【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、 (1)(2),理由见解析【解析】【分析】(1)根据题意作出辅助线,根据中位线的性质求得,根据平行线的性质求得,进而勾股定理即可求得;(2)方法同(1).(1)解:如图,取的中点P,连接 PEF分别是边的中点, ,,中,(2),理由如下,如图,取的中点P,连接 PEF分别是边的中点,,,,中,【点睛】本题考查了三角形中位线定理,勾股定理,平行线的性质,掌握中位线定理是解题的关键. 

    相关试卷

    2021学年第二十二章 四边形综合与测试巩固练习:

    这是一份2021学年第二十二章 四边形综合与测试巩固练习,共35页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试复习练习题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试复习练习题,共27页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map