终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析冀教版八年级数学下册第二十二章四边形定向测试练习题(含详解)

    立即下载
    加入资料篮
    2022年精品解析冀教版八年级数学下册第二十二章四边形定向测试练习题(含详解)第1页
    2022年精品解析冀教版八年级数学下册第二十二章四边形定向测试练习题(含详解)第2页
    2022年精品解析冀教版八年级数学下册第二十二章四边形定向测试练习题(含详解)第3页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀当堂检测题

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀当堂检测题,共24页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,若,,则的度数为( )
    A.157°B.147°C.137°D.127°
    2、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是( )
    A.360°B.900°C.1440°D.1800°
    3、如图,在给定的正方形中,点从点出发,沿边方向向终点运动, 交于点,以,为邻边构造平行四边形,连接,则的度数的变化情况是( )
    A.一直减小B.一直减小后增大C.一直不变D.先增大后减小
    4、在下列条件中,不能判定四边形是平行四边形的是( )
    A.AB∥CD,AD∥BCB.AB=CD,AD=BC
    C.AB ∥CD,AB=CDD.AB∥CD,AD=BC
    5、如图,△ABC的周长为a,以它的各边的中点为顶点作△A1B1C1,再以△AB1C1各边的中点为顶点作△A2B2C2,再以△AB2C2各边的中点为顶点作△A3B3C3,…如此下去,则△AnBnCn的周长为( )
    A.aB.aC.aD.a
    6、下列多边形中,内角和与外角和相等的是( )
    A.B.C.D.
    7、如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则( )
    A.8B.10C.12D.14
    8、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
    A.1B.C.D.
    9、若菱形的周长为8,高为2,则菱形的面积为( )
    A.2B.4C.8D.16
    10、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
    A.3cmB.4cmC.4.8cmD.5cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.
    2、如图,已知在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是_______ cm.
    3、如图,菱形中,,,点在边上,且,动点在边上,连接,将线段绕点顺时针旋转至线段,连接,则线段长的最小值为__.
    4、如图,翠屏公园有一块长为12m,宽为6m的长方形草坪,绿化部门计划在草坪中间修两条宽度均为2m的石子路(两条石子路的任何地方的水平宽度都是2m),剩余阴影区域计划种植鲜花,则种植鲜花的面积为______m2.
    5、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.
    (1)求证:△ABE≌△CDF;
    (2)求证:四边形AECF是矩形.
    2、如图,是一张放在平面直角坐标系中的长方形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,,在边上取一点,将纸片沿翻折,使点落在边上的点处.
    (1)直接写出点的坐标____________________;
    (2)求、两点的坐标.
    3、如图,在平行四边形中,、分别是边、上的点,且,,求证:四边形是矩形
    4、已知:线段m.
    求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.
    5、如图,在平行四边形ABCD中,点M是AD边的中点,连接BM,CM,且BM=CM.
    (1)求证:四边形ABCD是矩形;
    (2)若△BCM是直角三角形,直接写出AD与AB之间的数量关系.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据平行四边形的性质推出AO=AB,求出∠AOB的度数,即可得到的度数.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AC=2AO,
    ∵,
    ∴AO=AB,
    ∵,
    ∴,
    ∴=,
    故选:C.
    【点睛】
    此题考查了平行四边形的性质,三角形的内角和,利用邻补角求角度,正确掌握平行四边形的性质是解题的关键.
    2、C
    【解析】
    【分析】
    设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.
    【详解】
    解:设每一个外角都为x,则相邻的内角为4x,
    由题意得,4x+x=180°,
    解得:x=36°,
    多边形的外角和为360°,
    360°÷36°=10,
    所以这个多边形的边数为10,
    则该多边形的内角和是:(10﹣8)×180=1440°.
    故选:C.
    【点睛】
    本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.
    3、A
    【解析】
    【分析】
    根据题意,作交的延长线于,证明是的角平分线即可解决问题.
    【详解】
    解:作交的延长线于,
    ∵四边形 是正方形,
    ∴,

    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵四边形是平行四边形,
    ∴,,
    ∵, ,
    ∴,
    ∵,.
    ∴,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴是的角平分线,
    ∴点的运动轨迹是的角平分线,
    ∵,
    由图可知,点P从点D开始运动,所以一直减小,
    故选:A .
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    4、D
    【解析】

    5、A
    【解析】
    【分析】
    根据三角形中位线的性质可知的周长的周长,的周长的周长,以此类推找出规律,写出代数式,再整理即可选择.
    【详解】
    解:∵以△ABC的各边的中点为顶点作,
    ∴的周长的周长.
    ∵以各边的中点为顶点作,
    ∴的周长的周长,
    …,
    ∴的周长
    故选:A.
    【点睛】
    本题主要考查三角形中位线的性质,根据三角形中位线的性质求出前2个三角形的面积总结出规律是解答本题的关键.
    6、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    7、C
    【解析】
    【分析】
    根据折叠和矩形的性质,可得∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,从而得到∠BDE=∠DBE,进而得到BE=DE,再由的面积是22.5,可得,然后根据勾股定理,即可求解.
    【详解】
    解:根据题意得: ∠DBE =∠CBD,AD∥BC,AD=BC,AB⊥AD,
    ∴∠BDE=∠CBD,
    ∴∠BDE=∠DBE,
    ∴BE=DE,
    ∵的面积是22.5,,
    ∴ ,解得: ,
    ∴,
    在 中,由勾股定理得:

    ∴ .
    故选:C
    【点睛】
    本题主要考查了折叠和矩形的性质,勾股定理,熟练掌握折叠和矩形的性质,勾股定理是解题的关键.
    8、C
    【解析】
    【分析】
    证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
    【详解】
    解:四边形是正方形,
    ,,,









    是等腰直角三角形,

    故选:C.
    【点睛】
    本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
    9、B
    【解析】
    【分析】
    根据周长求出边长,利用菱形的面积公式即可求解.
    【详解】
    ∵菱形的周长为8,
    ∴边长=2,
    ∴菱形的面积=2×2=4,
    故选:B.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
    10、B
    【解析】
    【分析】
    由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
    ∴AC=8cm,
    ∵AE⊥BC,
    ∴∠AEC=90°,
    ∴OE=AC=4cm,
    故选:B.
    【点睛】
    本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.
    二、填空题
    1、22
    【解析】
    【分析】
    先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.
    【详解】
    解:平行四边形中,,



    平分,

    是等边三角形,


    在和中,,


    故答案为:22.
    【点睛】
    本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
    2、8
    【解析】

    3、
    【解析】
    【分析】
    在上取一点,使得,连接,,作直线交于,过点作于.证明,推出点在射线上运动,根据垂线段最短可知,当点与重合时,的值最小,求出即可.
    【详解】
    解:在上取一点,使得,连接,,作直线交于,过点作于.
    ,,
    是等边三角形,
    ,,
    ,,
    是等边三角形,
    ,,


    在和中,




    点在射线上运动,
    根据垂线段最短可知,当点与重合时,的值最小,
    ,,
    ,,

    ∴GT//AB
    ∵BG//AT
    四边形是平行四边形,
    ,,


    在中,


    的最小值为,
    故答案为:.
    【点睛】
    本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    4、48
    【解析】
    【分析】
    利用长方形的面积减去石子路的面积,即可求解.
    【详解】
    解:根据题意得:种植鲜花的面积为 .
    故答案为:48
    【点睛】
    本题主要考查了求平行四边形的面积,熟练掌握平行四边形的性质是解题的关键.
    5、9
    【解析】
    【分析】
    根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
    【详解】
    解:由题意得,n-2=7,
    解得:n=9,
    即这个多边形是九边形.
    故答案为:9.
    【点睛】
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    三、解答题
    1、 (1)证明见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)先根据平行四边形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理(定理)即可得证;
    (2)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据矩形的判定即可得证.
    (1)
    证明:四边形是平行四边形,



    在和中,,

    (2)
    证明:,

    四边形是平行四边形,


    在四边形中,,
    四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质、三角形全等的判定定理、矩形的判定等知识点,熟练掌握各判定定理与性质是解题关键.
    2、 (1)(10,8)
    (2)D(0,5),E(4,8)
    【解析】
    【分析】
    (1)根据,,可得点的坐标;
    (2)根据折叠的性质,可得AE=AO,OD=ED,根据勾股定理,可得EB的长,根据线段的和差,可得CE的长,可得E点坐标;再根据勾股定理,可得OD的长,可得D点坐标;
    (1)
    解:∵,,
    ∴点的坐标(10,8),
    故答案为:(10,8);
    (2)
    解:依题意可知,折痕AD是四边形OAED的对称轴,
    在Rt△ABE中,AE=AO=10,AB=OC=8,
    由勾股定理,得BE= =6,
    CE=BC-BE=10-6=4,E(4,8).
    在Rt△DCE中,由勾股定理,得DC2+CE2=DE2,
    又∵DE=OD,CD=8-OD,
    (8-OD)2+42=OD2,
    解得OD=5,D(0,5).
    所以D(0,5),E(4,8);
    【点睛】
    本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
    3、证明见解析
    【解析】
    【分析】
    平行四边形,可知;由于 ,可得,,知四边形为平行四边形,由可知四边形是矩形.
    【详解】
    证明:∵四边形 是平行四边形




    ∴四边形为平行四边形
    又∵
    ∴四边形是矩形.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定等知识.解题的关键在于灵活掌握矩形的判定.
    4、见详解
    【解析】
    【分析】
    先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.
    【详解】
    解:先作m的垂直平分线,取m的一半为AB,
    以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,
    过A作BC的平行线,与过C作AB的平行线交于D,
    则四边形ABCD为所求作矩形;

    ∵AD∥BC,CD∥AB,
    ∴四边形ABCD为平行四边形,
    ∵BC⊥AB,
    ∴∠ABC=90°,
    ∴四边形ABCD为矩形,
    ∵AB=,AC=m,
    ∴矩形的宽与对角线满足条件,
    ∴四边形ABCD为所求作矩形.
    【点睛】
    本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.
    5、 (1)见解析
    (2)AD=2AB,理由见解析
    【解析】
    【分析】
    (1)由SSS证明△ABM≌△DCM,得出∠A=∠D,由平行线的性质得出∠A+∠D=180°,证出∠A=90°,即可得出结论;
    (2)先证明△BCM是等腰直角三角形,得出∠MBC=45°,再证明△ABM是等腰直角三角形,得出AB=AM,即可得出结果.
    (1)
    证明:∵点M是AD边的中点,
    ∴AM=DM,
    ∵四边形ABCD是平行四边形,
    ∴AB=DC,AB∥CD,
    在△ABM和△DCM中,

    ∴△ABM≌△DCM(SSS),
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=90°,
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (2)
    解:AD与AB之间的数量关系:AD=2AB,理由如下:
    ∵△BCM是直角三角形,BM=CM,
    ∴△BCM是等腰直角三角形,
    ∴∠MBC=45°,
    由(1)得:四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠AMB=∠MBC=45°,
    ∴△ABM是等腰直角三角形,
    ∴AB=AM,
    ∵点M是AD边的中点,
    ∴AD=2AM,
    ∴AD=2AB.
    【点睛】
    本题考查了矩形的判定与性质、平行四边形的性质、平行线的性质、全等三角形的判定与性质、等腰直角三角形的的判定与性质等知识;熟练掌握平行四边形的性质,证明△ABM≌△DCM是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步测试题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品同步测试题,共29页。试卷主要包含了如图,E等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后测评,共29页。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀综合训练题,共28页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map