搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十二章四边形专题攻克试题(含详细解析)

    2021-2022学年冀教版八年级数学下册第二十二章四边形专题攻克试题(含详细解析)第1页
    2021-2022学年冀教版八年级数学下册第二十二章四边形专题攻克试题(含详细解析)第2页
    2021-2022学年冀教版八年级数学下册第二十二章四边形专题攻克试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共27页。试卷主要包含了如图,在中,DE平分,,则,如图,已知矩形ABCD中,R等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 (  )A.5 B.6 C.8 D.102、正方形具有而矩形不一定具有的性质是(       A.四个角相等 B.对角线互相垂直C.对角互补 D.对角线相等3、如图,在ABCD中,点E在边BC上,连接AEEMAE,垂足为E,交CD于点MAFBC,垂足为FBHAE,垂足为H,交AF于点N,连接ACNE.若AE=BNAN=CE,则下列结论中正确的有(       )个.;②是等腰直角三角形;③是等腰直角三角形;④;⑤A.1 B.3 C.4 D.54、如图,在中,DE平分,则       A.30° B.45° C.60° D.80°5、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是(   )A.20 B.40 C.60 D.806、如图,已知矩形ABCD中,RP分别是DCBC上的点,EF分别是APRP的中点,当PBC上从BC移动而R不动时,那么下列结论成立的是(       A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定7、若n边形每个内角都为156°,那么n等于(       A.8 B.12 C.15 D.168、在RtABC中,∠B=90°,DEF分别是边BCCAAB的中点,AB=6,BC=8,则四边形AEDF的周长是(       A.18 B.16 C.14 D.129、十边形中过其中一个顶点有(       )条对角线.A.7 B.8 C.9 D.1010、已知在平行四边形ABCD中,∠A=90°,如果添加一个条件,可使该四边形是正方形,那么这个条件可以是(       A.∠D=90° B.ABCD C.ADBC D.BCCD第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.2、平行四边形的对角线________.几何语言:∵四边形ABCD是平行四边形,AO=________,BO=________(平行四边形的对角线互相平分).3、如图,在中,D外一点,使EBD的中点,则__________.4、如图所示,过六边形的顶点的所有对角线可将六边形分成_______个三角形.5、如图,正方形的对角线相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.三、解答题(5小题,每小题10分,共计50分)1、已知:△ABCADBC边上的中线,点MAD上一动点(不与点A重合),过点MME∥AB,过点CCEAD,连接AE(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BMAC于点N,若点MAD的中点,求的值.2、如图,▱ABCD中,EBC边的中点,求证:DCCF3、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.4、如图,直线,线段分别与直线交于点、点,满足(1)使用尺规完成基本作图:作线段的垂直平分线交于点,交于点,交线段于点,连接.(保留作图痕迹,不写做法,不下结论)(2)求证:四边形为菱形.(请补全下面的证明过程)证明:____①____垂直平分∴____②________③____∴四边形是___④_____∴四边形是菱形(______⑤__________)(填推理的依据).5、(1)【发现证明】如图1,在正方形中,点分别是边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点分别是延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出之间的数量关系______(不要求证明)②如图3,如果点分别是延长线上的动点,且,则之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长. -参考答案-一、单选题1、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.2、B【解析】3、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAFAAS),得出BF=AFNF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BHAEAFBCAEEM∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC在△NBF和△EAF中,∴△NBF≌△EAFAAS);BF=AFNF=EF∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC∴∠ANB=∠CEA在△ANB和△CEA中,∴△ANB≌△CEASAS),故①正确;AN=CENF=EFBF=AF=FC又∵AFBC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;ABCD中,CDAB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,∴△ANE≌△ECMASA),故④正确;CM=NE又∵NF=NE=MCAF=MC+ECAD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.4、C【解析】【分析】根据平行四边形的性质得,故,由DE平分,即可计算【详解】∵四边形ABCD是平行四边形,DE平分故选:C.【点睛】本题考查平行四边形的性质,平行线的性质以及角平分线的定义,掌握平行四边形的性质是解题的关键.5、B【解析】【分析】根据菱形的面积公式求解即可.【详解】解:这个菱形的面积=×10×8=40.故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.6、C【解析】【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【详解】解:连接AR因为EF分别是APRP的中点,EF的中位线,所以,为定值.所以线段的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.7、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n边形每个外角的度数是:180°-156°=24°,n=360°÷24°=15.故选:C.【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.8、B【解析】9、A【解析】【分析】根据多边形对角线公式解答.【详解】解:十边形中过其中一个顶点有10-3=7条对角线,故选:A.【点睛】此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.10、D【解析】二、填空题1、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.2、     互相平分     CO     DO【解析】3、##30度【解析】【分析】延长BCAD交于F,通过全等证明CBF的中点,然后利用中位线的性质即可.【详解】解:延长BCAD交于F在△ABC和△AFC∴△ABC≌△AFCASA),BC=FCCBF的中点,EBD的中点,CE为△BDF的中位线,CE//AF∴∠ACE=∠CAF∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.4、4【解析】【分析】边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成个三角形,依此作答.【详解】解:过六边形的顶点的所有对角线可将六边形分成个三角形.故答案为4.【点睛】本题主要考查多边形的对角线,从边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为5、【解析】【分析】分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【详解】解:情况1,如下图:∵四边形ABCD是正方形,OD=OC,∠AOD=∠COD=90°,∵△OEF是等边三角形,OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCFSSS),∴∠DOE=∠COF∴∠DOF=∠COE∴∠DOF(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情况2,如下图:连接DECF∵四边形ABCD为正方形,OCOD,∠AOD=∠COB=90°,∵△OEF为等边三角形,OEOF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCFSSS),∴∠DOE=∠COF∴∠DOE=∠COF(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案为:105°或75°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.三、解答题1、 (1)①见解析;②见解析(2)是,见解析(3)【解析】【分析】(1)①根据DEAB,得出∠EDC=∠ABM,根据CEAM,∠ECD=∠ADB,根据AM是△ABC的中线,且DM重合,得出BDDC,再证△ABD≌△EDCASA)即可;②由①得△ABD≌△EDC,得出ABED,根据ABED,即可得出结论.(2)如图,设延长BMEC于点F,过MML∥DCCFL,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证BMD≌△MFLAAS),再证ABM≌△EMFASA),可证四边形ABME是平行四边形;(3)过点DDGBNAC于点G,根据MAD的中点,DGMN,得出MN为三角形中位线MNDG,根据DBC的中点,得出DGBN,可得MNBN,可求即可.(1)证明:①∵DEAB∴∠EDC=∠ABMCEAM∴∠ECD=∠ADBAMABC的中线,且DM重合,BDDCABDEDC中,∴△ABD≌△EDCASA),ABM≌△EMC②由①得ABD≌△EDCABEDABED∴四边形ABDE是平行四边形;(2)成立.理由如下:如图,设延长BMEC于点F,过MML∥DCCFLADECML∥DC∴四边形MDCL为平行四边形,ML=DC=BDML∥DC∴∠FML=∠MBD   ADEC∴∠BMD=∠MFL,∠AMB=∠EFM,在△BMD和△MFL∴△BMD≌△MFLAAS),BM=MF ,AB∥ME∴∠ABM=∠EMF在△ABM和△EMF中,∴△ABM≌△EMFASA),ABEMAB∥EM∴四边形ABME是平行四边形;(3)解:过点DDGBNAC于点GMAD的中点,DGMNMNDGDBC的中点,DGBNMNBN由(2)知四边形ABME为平行四边形,BMAE【点睛】本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.2、见解析【解析】【分析】根据平行四边形的性质可得ABCDABCD,根据平行线的性质可得BAECFE,根据中点的定义可得EBEC,利用AAS可证明ABE≌△FCE,可得ABCF,进而可得结论【详解】∵四边形ABCD是平行四边形,ABCDABCD∴∠BAE=∠CFEEBC中点,EBEC在△ABE与△FCE中,∴△ABE≌△FCEAAS),ABCFDCCF【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键3、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..4、 (1)见解析(2)①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;(2):根据,内错角相等得出∠2①,根据垂直平分       ,得出,可证②EOC,根据全等三角形性质得出OF③,再证,根据对角线互相平分的四边形是平行四边形判定四边形是平行四边形④,根据对角线互相垂直即可得出四边形是菱形(对角线互相垂直的平行四边形是菱形⑤).(1)解:分别以AD为圆心,大于AD的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l1E,交l2F,直线EF为线段AD的垂直平分线,连接即可;如图所示(2)证明:∠2①,垂直平分       ∴②EOCOF③,∴四边形是平行四边形④,∴四边形是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①;②;③;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.5、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转根据可证明,可得,则结论得证;②将绕点逆时针旋转,证明,可得出,则结论得证;(3)求出,设,则,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转,如图1,三点共线,(2)①不成立,结论:证明:如图2,将绕点顺时针旋转②如图3,将绕点逆时针旋转故答案为:(3)解:由(1)可知正方形的边长为6,,则中,解得:【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导. 

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试课时作业:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试课时作业,共29页。

    冀教版八年级下册第二十二章 四边形综合与测试优秀测试题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀测试题,共29页。试卷主要包含了如图,在中,DE平分,,则,如图,已知矩形ABCD中,R,已知等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品练习题,共26页。试卷主要包含了如图,菱形的对角线等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map