初中数学第二十二章 四边形综合与测试优秀同步达标检测题
展开
这是一份初中数学第二十二章 四边形综合与测试优秀同步达标检测题,共29页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
八年级数学下册第二十二章四边形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是( )A.矩形的对角线相等B.直角三角形斜边上的中线等于斜边的一半C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相垂直2、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是( )A.1个 B.2个 C.3个 D.4个3、小明想判断家里的门框是否为矩形,他应该( )A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角4、如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记的面积为,的面积为,若正方形的边长,,则的大小为( )A.6 B.7 C.8 D.95、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是( )A.3 B. C. D.66、六边形对角线的条数共有( )A.9 B.18 C.27 D.547、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积( )A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变8、下面性质中,平行四边形不一定具备的是( )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分9、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )A.3 B.4 C.5 D.610、如图,五边形中,,CP,DP分别平分,,则( )A.60° B.72° C.70° D.78°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在Rt中,,CD是斜边AB上的中线,已知,,则的周长等于______.2、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.3、如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD=2:3,那么AC的长为___.4、中,已知AB=CD=4,BC=6,则当AD=________时,四边形ABCD是平行四边形.5、如图,AC是正五边形ABCDE的对角线,则为______度.三、解答题(5小题,每小题10分,共计50分)1、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③.(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.①求证:.②若,求的长.2、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.3、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为 ;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为 ;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式 .(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是 ;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是 ;用两种不同的方法数锐角个数,可以得到等式 .(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有 条对角线,n边形共有 条对角线.4、如图,在菱形ABCD中,点E、F分别是边CD、BC的中点(1)求证:四边形BDEG是平行四边形;(2)若菱形ABCD的边长为13,对角线AC=24,求EG的长.5、如图,▱ABCD中,E为BC边的中点,求证:DC=CF. -参考答案-一、单选题1、C【解析】【分析】利用矩形的性质,直角三角形的性质,正方形的判定,菱形的性质依次判断可求解.【详解】解;矩形的对角线相等,故选项A不符合题意;直角三角形斜边上的中线等于斜边的一半,故选项B不符合题意;对角线互相垂直且相等的四边形不一定是正方形,故选项C符合题意;菱形的对角线互相垂直,故选项D不符合题意;故选:C.【点睛】本题考查了正方形的判定,矩形的性质,菱形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.2、A【解析】【分析】利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出 S▱AEFD,判断④.【详解】解:∵AB=3,AC=4,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∴∠DBF=∠ABC,在△ABC与△DBF中,, ∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;过A作AG⊥DF于G,如图所示:则∠AGD=90°,∵四边形AEFD是平行四边形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=, ∴S▱AEFD=DF•AG=4×=6;故④错误;∴错误的个数是1个,故选:A..【点睛】此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.3、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.4、D【解析】【分析】由题意依据全等三角形的判定得出△BOM≌△CON,进而根据正方形的性质即可得出的大小.【详解】解:∵正方形ABCD的对角线AC,BD交于点O,∴OC=OD=BO=AO,∠ABO=∠ACB=45°,AC⊥BD.∵∠MOB+∠BON=90°,∠BON+∠CON=90°∴∠BOM=∠CON,且OC=OB,∠ABO=∠ACB=45°,∴△BOM≌△CON(ASA),=S△BOM,∴,∵=S正方形ABCD,正方形的边长,,∴=S正方形ABCD -=.故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.5、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC2=AC2-AB2=36-9=27,∴BC=.故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6、A【解析】【分析】n边形对角线的总条数为:(n≥3,且n为整数),由此可得出答案.【详解】解:六边形的对角线的条数= =9.故选:A.【点睛】本题考查了多边形的对角线的知识,属于基础题,解答本题的关键是掌握:n边形对角线的总条数为:(n≥3,且n为整数).7、D【解析】【分析】连接AE,根据,推出,由此得到答案.【详解】解:连接AE,∵,∴,故选:D..【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE是解题的关键.8、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.9、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE=AE,∴△ABE≌△ADE,∴=5,同理△CBE≌△CDE,∴,∵,∴CDE的面积为: =3,故选A.【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.10、C【解析】【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.【详解】解:五边形的内角和等于,,,、的平分线在五边形内相交于点,,.故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.二、填空题1、##【解析】【分析】过点作,根据直角三角形斜边上的中线等于斜边的一半,可得,根据等腰三角形的三线合一可得,中位线的性质求得,根据勾股定理求得,继而求得的周长.【详解】解:如图,过点作在Rt中,,CD是斜边AB上的中线,为的中点,又为的中点,则在中,的周长等于故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.2、(,0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB===,∴OP=,∴点P的坐标为(,0).故答案为:(,0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.3、4【解析】【分析】四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.【详解】解:∵四边形是平行四边形∴∵∴∵∴∴设则解得:则故故答案为:4.【点睛】本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.4、6【解析】略5、72【解析】【分析】先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.【详解】解:五边形是正五边形,,,,故答案为:72.【点睛】本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.三、解答题1、 (1)见解析;(2)①见解析;②.【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,,整理出,再结合即可证明;②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)①四边形ABCD是正方形②在中,在,.【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.2、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.3、(1)①;②;=;(2)①(n-1)+(n-2)+(n-3)+……+1;②;(n-1)+(n-2)+(n-3)+……+1=;(3)①8000968;②119,n(n-3)【解析】【分析】(1)①根据边长为(a+b)的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条,而每条重复一次,所以n边形对角线的总条数为n(n-3)(n≥3,且n为整数)可得答案.【详解】解:(1)①大正方形的面积为;②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为;可以得到等式:=;故答案为:①;②;=;(2)①图中锐角的总个数是:(n-1)+(n-2)+(n-3)+……+1;②锐角的总个数是n(n-1);可以得到等式为(n-1)+(n-2)+(n-3)+……+1=n(n-1);故答案为:①(n-1)+(n-2)+(n-3)+……+1;②n(n-1);(n-1)+(n-2)+(n-3)+……+1=n(n-1);(3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22=2×(20002+222) =2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即×4×(4-3)=2;一个五边形共有5条对角线,即×5×(5-3)=5;一个六边形共有9条对角线,即×6×(6-3)=9;……,一个十七边形共有×17×(17-3)=119条对角线;一个n边形共有n(n-3)(n≥3,且n为整数)条对角线.故答案为:119,n(n-3).【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.4、 (1)证明见解析(2)10【解析】【分析】(1)利用AC平分∠BAD,AB∥CD,得到∠DAC=∠DCA,即可得到AD=DC,利用一组对边平行且相等可证明四边形ABCD是平行四边形,再结合AB=AD,即可求证结论;(2)根据菱形的性质,得到CD=13,AO=CO=12,结合中位线性质,可得四边形BDEG是平行四边形,利用勾股定理即可得到OB、OD的长度,即可求解.(1)证明:∵AC平分∠BAD,AB∥CD,∴∠DAC=∠BAC,∠DCA=∠BAC,∴∠DAC=∠DCA,∴AD=DC,又∵AB∥CD,AB=AD,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.(2)解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,对角线AC=24,∴CD=13,AO=CO=12,∵点E、F分别是边CD、BC的中点,∴EF∥BD(中位线),∵AC、BD是菱形的对角线,∴AC⊥BD,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴,∴EG=BD=10.【点睛】本题考查了平行四边形性质判定方法、菱形的判定和性质、等腰三角形性质、勾股定理等知识,关键在于熟悉四边形的判定方法和在题目中找到合适的判定条件.5、见解析【解析】【分析】根据平行四边形的性质可得AB∥CD,AB=CD,根据平行线的性质可得∠BAE=∠CFE,根据中点的定义可得EB=EC,利用AAS可证明△ABE≌△FCE,可得AB=CF,进而可得结论.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE;∵E为BC中点,∴EB=EC,在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.【点睛】本题考查平行四边形的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
相关试卷
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时作业,共26页。试卷主要包含了如图,在正方形ABCD中,点E等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十二章 四边形综合与测试精品课时训练,共30页。试卷主要包含了六边形对角线的条数共有等内容,欢迎下载使用。
这是一份2020-2021学年第二十二章 四边形综合与测试优秀课堂检测,共24页。试卷主要包含了下列命题错误的是,下列说法不正确的是等内容,欢迎下载使用。