搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含答案解析)

    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含答案解析)第1页
    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含答案解析)第2页
    精品试题冀教版八年级数学下册第二十二章四边形专项攻克试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试

    展开

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀达标测试,共28页。试卷主要包含了如图,E,已知锐角∠AOB,如图.,如图,已知矩形ABCD中,R等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )

    A.8 B.10 C.16 D.20
    2、平行四边形ABCD中,若∠A=2∠B,则∠C的度数为(  )
    A.120° B.60° C.30° D.15°
    3、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为( )

    A.8 B.10 C.12 D.16
    4、如图,E、F分别是正方形ABCD的边CD、BC上的点,且,AF、BE相交于点G,下列结论中正确的是( )
    ①;②;③;④.

    A.①②③ B.①②④ C.①③④ D.②③④
    5、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是(   )

    A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
    B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
    C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
    D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
    6、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是( )

    A.线段的长逐渐增大 B.线段的长逐渐减少
    C.线段的长不变 D.线段的长先增大后变小
    7、已知锐角∠AOB,如图.

    (1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;
    (2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;
    (3)作射线OP交CD于点Q.
    根据以上作图过程及所作图形,下列结论中错误的是(   )
    A.四边形OCPD是菱形 B.CP=2QC
    C.∠AOP=∠BOP D.CD⊥OP
    8、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F为DE的中点.若OF的长为1,则△CEF的周长为( )

    A.14 B.16 C.18 D.12
    9、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( )

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减小
    C.线段EF的长不改变 D.线段EF的长不能确定
    10、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 (  )
    A.5 B.6 C.8 D.10
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,,,E、F分别是边AB、BC上的动点,且,M为EF中点,P是边AD上的一个动点,则的最小值是______.

    2、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.
    3、如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,则AC的长为__________.

    4、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.

    ① ②BG垂直平分DE ③ ④ ⑤
    5、如图所示,是长方形地面,长,宽,中间竖有一堵砖墙高.一只蚂蚱从点爬到点,它必须翻过中间那堵墙,则它至少要走______的路程.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    2、如图,已知平行四边形ABCD.

    (1)用尺规完成以下基本作图:在CB上截取CE,使CE=CD,连接DE,作∠ABC的平分线BF交AD于点F.(保留作图痕迹,不写作法)
    (2)在(1)所作的图形中,证明四边形BEDF为平行四边形.
    3、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.

    (1)求证:AE=CE;
    (2)猜想线段AE,EG和GF之间的数量关系,并证明.
    4、尺规作图并回答问题:(保留作图痕迹)
    已知:如图,四边形ABCD是平行四边形.
    求作:菱形AECF,使点E,F分别在BC,AD上.
    请回答:在你的作法中,判定四边形AECF是菱形的依据是   .

    5、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.


    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB=CD,AD=BC,
    ∵OE⊥AC,
    ∴OE是线段AC的垂直平分线,
    ∴AE=CE,
    ∵△CDE的周长为8,
    ∴CE+DE+CD=8,即AD+CD =8,
    ∴平行四边形ABCD的周长为2(AD+CD)=16.
    故选:C.
    【点睛】
    本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.
    2、A
    【解析】
    【分析】
    根据平行四边形的性质得出BCAD,根据平行线的性质推出∠A+∠B=180°,代入求出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,

    ∴BCAD,
    ∴∠A+∠B=180°,
    把∠A=2∠B代入得:3∠B=180°,
    ∴∠B=60°,
    ∴∠C=120°
    故选:A.
    【点睛】
    本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能推出∠A+∠B=180°是解此题的关键.
    3、A
    【解析】
    【分析】
    根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.
    【详解】
    解:①在长方形纸片ABCD中,AB=12,AD=20,
    ∴BC=AD=20,
    当p与B重合时,BA′=BA=12,
    CA′=BC-BA′=20-12=8,
    ②当Q与D重合时,
    由折叠得A′D=AD=20,
    由勾股定理,得
    CA′==16,
    CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,
    故选:A.
    【点睛】
    本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.
    4、B
    【解析】
    【分析】
    根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴,,
    在与中,

    ∴,
    ∴,①正确;
    ∵,

    ∴,
    ∴,
    ∴,②正确;
    ∵GF与BG的数量关系不清楚,
    ∴无法得AG与GE的数量关系,③错误;
    ∵,
    ∴,
    ∴,
    即,④正确;
    综上可得:①②④正确,
    故选:B.
    【点睛】
    题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.
    5、D
    【解析】
    【分析】
    当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
    【详解】
    解:如图,连接当为各边中点时,可知分别为的中位线


    ∴四边形是平行四边形
    A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
    B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
    C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
    D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
    故选D.
    【点睛】
    本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
    6、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.
    【详解】
    解:连接.

    、分别是、的中点,
    为的中位线,
    ,为定值.
    线段的长不改变.
    故选:.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    7、A
    【解析】
    【分析】
    根据作图信息可以判断出OP平分,由此可以逐一判断即可.
    【详解】
    解:由作图可知,平分
    ∴OP垂直平分线段CD
    ∴∠AOP=∠BOP,CD⊥OP
    故选项C,D正确;
    由作图可知,
    ∴是等边三角形,

    ∵OP垂直平分线段CD

    ∴CP=2QC
    故选项B正确,不符合题意;
    由作图可知,,不能确定四边形OCPD是菱形,故选项A符合题意,
    故选:A
    【点睛】
    本题考查了基本作图,解题的关键是熟练掌握作图的依据.
    8、B
    【解析】
    【分析】
    根据中位线的性质及直角三角形斜边上中线的性质可得:,结合图形得出的周长为,再由中位线的性质得出,在中,利用勾股定理确定,即可得出结论.
    【详解】
    解:在正方形ABCD中,,,,
    ∵F为DE的中点,O为BD的中点,
    ∴OF为的中位线且CF为斜边上的中线,
    ∴,
    ∴的周长为,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,,,,
    ∴,
    ∴的周长为,
    故选:B.
    【点睛】
    题目主要考查正方形的性质,三角形中位线的性质,勾股定理,直角三角形斜边中线的性质等,理解题意,熟练掌握运用各个知识点是解题关键.
    9、C
    【解析】
    【分析】
    因为R不动,所以AR不变.根据中位线定理,EF不变.
    【详解】
    解:连接AR.

    因为E、F分别是AP、RP的中点,
    则EF为的中位线,
    所以,为定值.
    所以线段的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    10、A
    【解析】
    【分析】
    先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    【详解】
    解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
    ∴每个外角是:180°−108°=72°,
    ∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
    故选:A.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
    二、填空题
    1、11
    【解析】
    【分析】
    作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而 CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.
    【详解】
    如图,作点C关于AD的对称点G,连接PG、GD、BM、GB

    由对称的性质得:PC=PG,GD=CD
    ∵GP+PM+BM≥BG
    ∴CP+PM=GP+PM≥BG-BM
    则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM
    ∵四边形ABCD是矩形
    ∴CD=AB=6,∠BCD=∠ABC=90°
    ∴CG=2CD=12
    ∵M为线段EF的中点,且EF=4

    在Rt△BCG中,由勾股定理得:
    ∴GM=BG-BM=13-2=11
    即CP+PM的最小值为11.
    【点睛】
    本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.
    2、5cm
    【解析】

    3、16
    【解析】

    4、①②⑤
    【解析】
    【分析】
    先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.
    【详解】
    解:∵∠ACB=90°,BE⊥AB,AC=BC,
    ∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,
    ∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,
    ∵AF平分∠BAC,
    ∴∠BAE=∠DAC=22.5°,
    ∴∠BEA=∠ADC,
    又∵∠ADC=∠BDE,
    ∴∠BDE=∠BED,
    ∴BD=ED,
    又∵M是DE的中点,
    ∴BM⊥DE,∠GBE=∠DBG,
    ∴BG垂直平分DE,∠AMG=90°,故②正确,
    ∴∠MAG+∠MGA=90°,
    ∵∠CBG+∠CGB=90°,
    ∴∠DAC=∠GBC=22.5°,
    ∴∠GBE=22.5°,
    ∴2∠GBE=45°,
    又∵AC=BC,
    ∴△ACD≌△BCG(ASA),故①正确;
    ∴CD=CG,
    ∵AC=BC=BD+CD,
    ∴AC=BE+CG,故⑤正确;
    ∵∠G=180°-∠BCG-∠CBG=67.5°,
    ∴∠G≠2∠GBE,故④错误;
    如图所示,延长BE交AC延长线于G,
    ∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,
    ∴△ABH是等腰直角三角形,
    ∵BC⊥AH,
    ∴C为AH的中点,
    ∵AB≠AH,AF是∠BAH的角平分线,
    ∴BE≠HE,即E不是BH的中点,
    ∴CE不是△ABH的中位线,
    ∴CE与AB不平行,
    ∴BE与CE不垂直,故③错误;
    故答案为:①②⑤.

    【点睛】
    本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.
    5、
    【解析】
    【分析】
    根据题意,将长方形底面和中间墙展开为平面图,并连接BD,根据两点之间直线段最短和勾股定理的性质计算,即可得到答案.
    【详解】
    将长方形底面和中间墙展开后的平面图如下,并连接BD

    根据题意,展开平面图中的
    ∴一只蚂蚱从点爬到点,最短路径长度为展开平面图中BD长度
    ∵是长方形地面


    故答案为:.
    【点睛】
    本题考查了立体图形展开图、矩形、两点之间直线段最短、勾股定理的知识;解题的关键是熟练掌握立体图形展开图、勾股定理的知识,从而完成求解.
    三、解答题
    1、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    2、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)延长CB到E使CE=CD,然后作∠ABC的平分线交AD的延长线于F;
    (2)先根据平行四边形的性质得到AD=BC,AB=CD,ADBC,则CE=AB,再证明∠ABF=∠F得到AB=AF,然后证明BE=DF,从而可判断四边形BEDF为平行四边形.
    (1)
    如图,DE、BF为所作;

    (2)
    证明:∵四边形ABCD为平行四边形,
    ∴AD=BC,AB=CD,AD∥BC,
    ∵CE=CD,
    ∴CE=AB,
    ∵BF平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵AFBC,
    ∴∠CBF=∠F,
    ∴∠ABF=∠F,
    ∴AB=AF,
    ∴CE=AF,即CB+BE=AD+DF,
    ∴BE=DF,
    ∵BEDF,
    ∴四边形BEDF为平行四边形.
    【点睛】
    本题考查了作线段,作角平分线,平行四边形的性质与判定,掌握以上知识是解题的关键.
    3、 (1)见解析
    (2)AE2+ GF2=EG2,证明见解析
    【解析】
    【分析】
    (1)根据“SAS”证明△ADE≌△CDE即可;
    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
    (1)
    证明:∵四边形ABCD是正方形,
    ∴AD=CD,∠ADE=∠CDE,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴AE=CE;
    (2)
    AE2+ GF2=EG2,理由:
    连接CG
    ∵△ADE≌△CDE,
    ∴∠1=∠2.
    ∵G为FH的中点,
    ∴CG=GF=GH=FH,
    ∴∠6=∠7.
    ∵∠5=∠6,
    ∴∠5=∠7.
    ∵∠1+∠5=90°,
    ∴∠2+∠7=90°,即∠ECG=90°,
    在Rt△CEG中,CE2+CG2=EG2,
    ∴AE2+ GF2=EG2.

    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
    4、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【解析】
    【分析】
    根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.
    【详解】
    解:如图,四边形AECF即为所求作.

    理由:四边形ABCD是平行四边形,
    ∴AE∥CF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分线段AC,
    ∴OA=OC,
    在△AEO和△CFO中,

    ∴△AEO≌△CFO(ASA),
    ∴AE=CF,
    ∴四边形AECF是平行四边形,
    ∵EA=EC或AC⊥EF,
    ∴四边形AECF是菱形.
    故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.
    【点睛】
    本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    5、150°
    【解析】
    【分析】
    先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.
    【详解】
    解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,
    ∴∠ADC=180°-∠ADE=55°,
    ∵∠A+∠B+∠C+∠ADE=360°,
    ∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.
    【点睛】
    此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.

    相关试卷

    初中冀教版第二十二章 四边形综合与测试精品习题:

    这是一份初中冀教版第二十二章 四边形综合与测试精品习题,共28页。

    数学八年级下册第二十二章 四边形综合与测试优秀当堂检测题:

    这是一份数学八年级下册第二十二章 四边形综合与测试优秀当堂检测题,共30页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品达标测试,共26页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map