搜索
    上传资料 赚现金
    英语朗读宝

    难点解析冀教版八年级数学下册第二十二章四边形专题测试试卷(无超纲)

    难点解析冀教版八年级数学下册第二十二章四边形专题测试试卷(无超纲)第1页
    难点解析冀教版八年级数学下册第二十二章四边形专题测试试卷(无超纲)第2页
    难点解析冀教版八年级数学下册第二十二章四边形专题测试试卷(无超纲)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品课后作业题,共29页。试卷主要包含了下列关于的叙述,正确的是等内容,欢迎下载使用。
    八年级数学下册第二十二章四边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点DE分别是△ABCBABC的中点,AC=3,则DE的长为(       A.2 B. C.3 D.2、小明想判断家里的门框是否为矩形,他应该(     A.测量三个角是否都是直角 B.测量对角线是否互相平分C.测量两组对边是否分别相等 D.测量一组对角是否是直角3、如图,已知正方形的边长为4,是对角线上一点,于点于点,连接.给出下列结论:①;②四边形的周长为8;③;④的最小值为;⑤;⑥.其中正确结论有几个(     A.3 B.4 C.5 D.64、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为(       A.3 B.6 C. D.5、下列关于的叙述,正确的是(       A.若,则是矩形 B.若,则是正方形C.若,则是菱形 D.若,则是正方形6、平面上六个点ABCDEF,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是(       A.135度 B.180度 C.200度 D.360度7、如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的《勾股弦图》,它是由四个全等的直角三角形拼接而成,如果大正方形的面积是18,直角三角形的直角边长分别为ab,且a2b2ab+10,那么小正方形的面积为(       A.2 B.3 C.4 D.58、在RtABC中,∠B=90°,DEF分别是边BCCAAB的中点,AB=6,BC=8,则四边形AEDF的周长是(       A.18 B.16 C.14 D.129、下面性质中,平行四边形不一定具备的是(  )A.对角互补 B.邻角互补C.对角相等 D.对角线互相平分10、下列命题不正确的是(       A.三边对应相等的两三角形全等B.若,则C.有一组对边平行、另一组对边相等的四边形是平行四边形D.的三边为abc,若,则是直角三角形.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在四边形ABCD中,ADBCBCCDBC=10cm,MBC上一点,且BM=4cm,点EA出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以AMEF为顶点的四边形是平行四边形.2、如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点Bx轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ___;B2020的坐标是 ___.3、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.4、如图,在平行四边形ABCD中,对角线ACBD交于点OACABAB,且ACBD=2:3,那么AC的长为___.5、如图,在平行四边形 ABCD 中,∠D=100°,AC 为对角线,将ACD 绕点 A 顺时针旋转一定的角度后得到AEF,使点 D 的对应点 E 落在边 AB 上,若点 C 的对应点 F 落在边CB 的延长线上,则∠EFB 的度数为___.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD中,EBD上一点,AE的延长线交BC的延长线于点F,交CD于点HGFH的中点.(1)求证:AE=CE(2)猜想线段AEEGGF之间的数量关系,并证明.2、如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.3、若直线分别交轴、轴于AC两点,点P是该直线上在第一象限内的一点,PB轴,B为垂足,且SABC= 6(1)求点BP的坐标;(2)点D是直线AP上一点,ABD是直角三角形,求点D坐标;(3)请问坐标平面是否存在点Q,使得以QCPB为顶点四边形是平行四边形,若存在请直接写出点Q的坐标;若不存在,请说明理由.4、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.5、如图,在四边形ABCD中,ABAD,AD//BC(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BDBC于点EF.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形. -参考答案-一、单选题1、D【解析】2、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A、三个角都是直角的四边形是矩形,选项A符合题意;B、对角线互相平分的四边形是平行四边形,选项B不符合题意,C、两组对边分别相等的四边形是平行四边形,选项C不符合题意;D、一组对角是直角的四边形不是矩形,选项D不符合题意;故选:A.【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】如图,过点于点,连接,可说明四边形为矩形,是等腰直角三角形,;①中可得为等腰直角三角形,进而求,由于四边形是平行四边形,,故可知;②四边形为矩形,进而可求矩形的周长;③证明,由全等可知,进而可说明;④最小时,最小,即时,最小,计算即可;⑤在中,勾股定理求得将线段等量替换求解即可;⑥如图1,延长交于点,证明,得进而可说明【详解】解:如图,过点于点,连接由题意知∴四边形为平行四边形∴四边形为矩形是等腰直角三角形①∵为等腰直角三角形∴四边形是平行四边形正确;②∵∴四边形为矩形四边形的周长正确;四边形为矩形∵在正确;最小时,最小∴当时,即时,的最小值等于正确;中,正确;⑥如图1,延长交于点 ∵在正确;综上,①②③④⑤⑥正确,故选:【点睛】本题考查了正方形,矩形的判定与性质,勾股定理,等腰直角三角形,三角形全等.解题的关键在于对知识的灵活综合运用.4、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD∵点AC的中点, ∴∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形 是等边三角形, ∴∠BAA'=60°, ∴∠ACB=30°, AB=3, ∴AC=2AB=6, 即点B与点之间的距离为6. 故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.5、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项错误,正确;即可得出结论.【详解】解:中,四边形是矩形,选项符合题意;中,四边形是菱形,不一定是正方形,选项不符合题意;中,四边形是矩形,不一定是菱形,选项不符合题意;中,四边形是菱形,选项不符合题意;故选:【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.6、D【解析】【分析】根据三角形外角性质及四边形内角和求解即可.【详解】解:如下图所示:根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D∵∠1+∠2+∠A+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:D.【点睛】此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.7、A【解析】【分析】由正方形1性质和勾股定理得,再由,得,则,即可解决问题.【详解】解:设大正方形的边长为大正方形的面积是18,小正方形的面积故选:A.【点睛】本题考查了勾股定理、正方形的性质以及完全平方公式等知识,解题的关键是求出8、B【解析】9、A【解析】【分析】直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.【详解】解:A、平行四边形对角不一定互补,故符合题意;B、平行四边形邻角互补正确,故不符合题意;C、平行四边形对角相等正确,故不符合题意.D、平行四边形的对角线互相平分正确,故不符合题意;故选A.【点睛】此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.10、C【解析】【分析】根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.【详解】解:A、三边对应相等的两三角形全等,此命题正确,不符题意;B、若,则,此命题正确,不符题意;C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;D、的三边为,若,即,则是直角三角形,此命题正确,不符题意;故选:C.【点睛】本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.二、填空题1、4ss【解析】【分析】分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.【详解】解:当点F在线段BM上,即0t2,以AME、F为顶点的四边形是平行四边形则有t42t,解得tF在线段CM上,即2t5,以AMEF为顶点的四边形是平行四边形,则有t2t4,解得t4综上所述,t4,以AMEF为顶点的四边形是平行四边形,故答案为:4ss【点睛】此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.2、          【解析】【分析】根据已知条件和勾股定理求出OB2的长度即可求出B2的坐标,再根据题意和图形可看出每经过一次变化,正方形都逆时针旋转45°,正方形的边长都乘以所以可求出从BB2020变化的坐标.【详解】解:∵四边形OABC是边长为1正方形,B1的坐标是B2的坐标是根据题意和图形可看出每经过一次变化,正方形逆时针旋转45°,其边长乘以B3的坐标是B4的坐标是∴旋转8次则OB旋转一周,∵从BB2020经过了2020次变化,2020÷8=252…4,∴从BB2020B4都在x轴负半轴上,∴点B2020的坐标是【点睛】本题主要考查了规律型-点的坐标,解决本题的关键是利用正方形的变化过程寻找点的变化规律.3、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.4、4【解析】【分析】四边形是平行四边形,可得,由,可知,由可知在中勾股定理求解的值,进而求解的值.【详解】解:∵四边形是平行四边形∴设解得:故答案为:4.【点睛】本题考查了勾股定理,平行四边形的性质等知识.解题的关键在于正确的求解.5、20°##20度【解析】【分析】根据平行四边形 ABCD 性质求出∠DAB=180°-∠D=80°,根据△ACD 绕点 A 顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形 ABCD 中,∠D=100°,∴∠DAB=180°-∠D=80°,ACD 绕点 A 顺时针旋转一定的角度后得到AEFAF=AC,∠FAE=∠CAD,∠AFE=∠ACD∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=AD∥BC∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.三、解答题1、 (1)见解析(2)AE2+ GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在RtCEG中,可得CE2+CG2=EG2,进而可得线段AEEGGF之间的数量关系.(1)证明:∵四边形ABCD是正方形,AD=CD,∠ADE=∠CDE在△ADE和△CDE∴△ADE≌△CDEAE=CE(2)AE2+ GF2=EG2,理由:连接CG∵△ADE≌△CDE∴∠1=∠2.GFH的中点,CG=GF=GH=FH∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,RtCEG中,CE2+CG2=EG2AE2+ GF2=EG2【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.2、     11     见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2=(2+32=11;故答案为:11;(2)分别以ACBCAB为一边作正方形ACED,正方形BCNM,正方形ABHF延长DEMN于点Q,连接QC,平移QCAGBP位置,直线GP分别交AFBH于点TS,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.3、 (1)B(2,0),P(2,3)(2)(2,3)或((3)(0,5)或(0,-1)或(4,1)【解析】【分析】(1)设Bx,0),则Pxx+2),由SABC=6列方程求出x的值,即得到点B和点P的坐标;(2)当点D与点P重合时,ABD是直角三角形;当点D与点P不重合时,过点CCEAP,先求出直线CE的解析式,再由直线BDCE求出直线BD的解析式且与y=x+2联立方程组,求出点D的坐标;(3)画出图形,根据平行四边形的性质分三种情况得出点Q坐标.(1)解:如图1,设Bx,0),则Pxx+2),对于y=x+2,当y=0时,由x+2=0,得,x=-4;当x=0时,y=2,A(-4,0),C(0,2),∵点P在第一象限,且SABC=6,×2(x+4)=6,解得x=2,B(2,0),P(2,3).(2)如图1,点D与点P重合,此时∠ABD=∠ABP=90°,∴△ABD是直角三角形,此时D(2,3);如图2,点D在线段AP上,∠ADB=90°,此时ABD是直角三角形,作CEAP,交x轴于点E则∠ACE=∠ADB=90°,BDCEAC=Em,0),AEOC=ACCE=SACE,得AEOC=ACCE∴2(m+4)=CECE=m+4),∵∠COE=90°,OE2+OC2=CE2m2+22=(m+4)]2,整理得,m2-2m+1=0,解得,m1=m2=1,E(1,0);设直线CE的解析式为y=kx+2,则k+2=0,解得,k=-2,y=-2x+2;设直线BD的解析式为y=-2x+n,则-2×2+n=0,解得,n=4,y=-2x+4,,得:D);由图象可知,当点DPA的延长线上,或点DAP的延长线上,则ABD不能是直角三角形,综上所述,点D的坐标是(2,3)或();(3)存在.如图, 当四边形CQBP是平行四边形时,此时,CQ=PB=3,Q(0,-1);当四边形CQ1PB是平行四边形时,此时,CQ1=PB=3,Q1(0,5);当四边形CPQ2B是平行四边形时,此时,CPBQ2CBPQ2Q2(4,1);综上所述,点Q的坐标为(0,5)或(0,-1)或(4,1).【点睛】此题重点考查一次函数的图象与性质、平行四边形的判定与性质、勾股定理等知识点,在解第(2)题、第(3)题时,应进行分类讨论,求出所有符合条件的结果,此题综合性较强,难度较大,属于考试压轴题.4、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.5、 (1)见解析(2)见解析【解析】【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.(1)(1)如图:EF即为所求作(2)证明:如图,连接DFAD//BC∴∠ADE=∠EBFAF垂直平分BDBE=DE在△ADE和△FBE中,∴△ADE≌△FBEASA),AE=EFBDAF互相垂直且平分,∴四边形ABFD为菱形.【点睛】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键. 

    相关试卷

    冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试精品当堂达标检测题,共27页。试卷主要包含了下列命题是真命题的有个.等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀课时作业,共33页。试卷主要包含了如图,E等内容,欢迎下载使用。

    冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练:

    这是一份冀教版八年级下册第二十二章 四边形综合与测试优秀一课一练,共23页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map