初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题
展开六年级数学下册第五章基本平面图形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )
A.a B.b C.c D.d
2、下列命题中,正确的有( )
①两点之间线段最短; ②角的大小与角的两边的长短无关;
③射线是直线的一部分,所以射线比直线短.
A.0个 B.1个 C.2个 D.3个
3、在一幅七巧板中,有我们学过的( )
A.8个锐角,6个直角,2个钝角 B.12个锐角,9个直角,2个钝角
C.8个锐角,10个直角,2个钝角 D.6个锐角,8个直角,2个钝角
4、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
5、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
6、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
7、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).
A.3组 B.4组 C.5组 D.6组
8、已知与互为余角,若,则的补角的大小为( )
A. B. C. D.
9、若的补角是,则的余角是( )
A. B. C. D.
10、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对 B.2对 C.3对 D.4对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.
2、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.
3、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
4、=_____度,90°﹣=___° __.
5、如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.
(1)连接AB;
(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;
(3)作直线BC与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .
2、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)如图,若∠AOB=120°,OC平分∠AOB,
①补全图形;
②填空:∠MON的度数为 .
(2)探求∠MON和∠AOB的等量关系.
3、如图,O为直线AB上一点,,OD平分∠AOC,.
(1)图中小于平角的角有______个.
(2)求出∠BOD的度数.
(3)小明发现OE平分∠BOC,请你通过计算说明道理.
4、如图1,在数轴上点A表示数a,点B表示数b,O为原点,AB表示点A和点B之间的距离,且a,b满足.
(1)若T为线段AB上靠近点B的三等分点,求线段OT的长度;
(2)如图2,若Q为线段AB上一点,C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),运动的时间为ts.若C、D运动到任意时刻时,总有,请求出AQ的长;
(3)如图3,E、F为线段OB上的两点,且满足,,动点M从A点、动点N从F点同时出发,分别以3个单位/s,1个单位/s的速度沿直线AB向右运动,是否存在某个时刻使得成立?若存在,求此时MN的长度;若不存在,说明理由.
5、如图,点C为线段AB的中点,点E为线段AB上的点,D为AE的中点,若AB=15,CE=4.5,求线段DE.
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用直尺画出遮挡的部分即可得出结论.
【详解】
解:利用直尺画出图形如下:
可以看出线段b与n在一条直线上.
故选:B.
【点睛】
本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.
2、C
【解析】
【分析】
利用线段的性质、角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:①两点之间线段最短,正确,符合题意;
②角的大小与角的两边的长短无关,正确,符合题意;
③射线是直线的一部分,射线和直线都无法测量长度,故错误,不符合题意,正确的有2个,
故选:C.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解线段的性质、角的定义等知识,难度不大.
3、B
【解析】
【分析】
根据一副七巧板图形,查出锐角,直角和钝角的个数即可.
【详解】
5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,
在一幅七巧板中根据12个锐角,9个直角,2个钝角.
故选择B.
【点睛】
本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.
4、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
5、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
6、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
7、C
【解析】
【分析】
利用网格作图即可.
【详解】
如图:
在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,
故选:C
【点睛】
此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.
8、B
【解析】
【分析】
根据求得,根据求得的补角
【详解】
解:∵与互为余角,若,
∴
故选B
【点睛】
本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为,互为补角的两角之和为.
9、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
10、B
【解析】
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
二、填空题
1、67.5
【解析】
【分析】
6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.
【详解】
解:∵6点45分时,分针指向9,时针在指向6与7之间,
∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.
故答案为:67.5.
【点睛】
本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.
2、两点确定一条直线
【解析】
【分析】
根据两点确定一条直线,即可求解.
【详解】
解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.
故答案为:两点确定一条直线
【点睛】
本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.
3、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
4、
【解析】
【分析】
根据角度的和差以及角度值进行化简计算即可
【详解】
解:
90°﹣
故答案为:
【点睛】
本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.
5、55
【解析】
【分析】
根据余角的定义及等角的余角相等即可求解.
【详解】
解:∵∠1与∠2互余,
∴∠1+∠2=90°,
∵∠3与∠4互余,
∴∠3+∠4=90°,
又∠1=∠3,
∴∠2=∠4=55°,
故答案为:55.
【点睛】
本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.
三、解答题
1、 (1)见解析
(2)见解析
(3)见解析,两点之间,线段最短
【解析】
【分析】
(1)根据题意作线段即可;
(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;
(3)作直线BC与射线AD交于点F,进而根据两点之间,线段最短即可求解
(1)
如图所示,作线段,AB即为所求;
(2)
如图所示,作射线AD,并在线段AD的延长线上用圆规截取DE=AB,射线AD,线段即为所求;
(3)
如图所示,作直线BC与射线AD交于点F,直线BC即为所求;
线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.
故答案为:两点之间,线段最短.
【点睛】
本题考查了画射线、线段、直线,两点之间线段最短,掌握线段的性质是解题的关键.
2、 (1)①见解析;②
(2),见解析
【解析】
【分析】
(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;
②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;
(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .
(1)
①∵∠AOB=120°,OC平分∠AOB,
∴∠BOC=∠AOC=,
∵OM是∠AOC靠近OA的三等分线,
∴∠AOM=,
∵ON是∠BOC靠近OB的三等分线,
∴∠BON=,
在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,
补全图形;
②∵∠AOM=,∠BON=,∠AOB=120°,
∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,
∴∠MON的度数是80°,
故答案为:80°
(2)
∠MON=∠AOB.
∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.
∴∠AOM=,∠BON=,
∴ ,
,
,
.
【点睛】
本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.
3、 (1)9
(2)
(3)见解析
【解析】
【分析】
(1)分别以为始边计数数角,从而可得答案;
(2)先求解 再求解 从而可得答案;
(3)分别求解从而可得结论.
(1)
解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.
所以图中小于平角的角共有9个.
(2)
解:因为,OD平分∠AOC,
所以,
又
所以
(3)
解:因为,,
所以
又因为
所以,
所以OE平分∠BOC.
【点睛】
本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.
4、 (1)5
(2)5
(3)存在,9或0
【解析】
【分析】
(1)根据绝对值的非负性及偶次方的非负性求出a=-5,b=10,得到AB=10-(-5)=15,由T为线段AB上靠近点B的三等分点,得到BT=5,根据OT=OB-BT求出结果;
(2)由运动速度得到BD=2QC,由C、D运动到任意时刻时,总有,得到BQ=2AQ,即可求出AQ;
(3)先求出BF=4,EF=2,AE=9.当时,得到9-3m+4-m=9,当时,得到3m-9+4-m=9;当m>4时,得到3m-9+m-4=9,解方程即可.
(1)
解:∵,
∴a+5=0,b+2a=0,
∴a=-5,b=10,
∴点A表示数-5,点B表示数10,
∴AB=10-(-5)=15,
∵T为线段AB上靠近点B的三等分点,
∴BT=5,
∴OT=OB-BT=5;
(2)
解:∵C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),
∴BD=2QC,
∵C、D运动到任意时刻时,总有,
∴BQ=2AQ,
∵BQ+AQ=15,
∴AQ=5;
(3)
解:∵,,
∴BF=4,EF=2,AE=9,
设点M运动ms,
当时,如图,
∵EM=9-3m,BN=4-m,,
∴9-3m+4-m=9,
解得m=1,
∴MN=9-3m+2+m=9;
当时,如图,
∵EM=3m-9,BN=4-m,,
∴3m-9+4-m=9,
解得m=7(舍去);
当m>4时,如图,
∵EM=3m-9,BN=m-4,,
∴3m-9+m-4=9,
解得m=;
∴MN=15-3m+m-4=0;
综上,存在,此时MN的长度为9或0.
【点睛】
此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.
5、6
【解析】
【分析】
利用线段中点的含义先求解 再利用线段的和差关系求解 结合D为AE的中点,从而可得答案.
【详解】
解: AB=15,点C为线段AB的中点,
D为AE的中点,
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.
数学六年级下册第五章 基本平面图形综合与测试课后练习题: 这是一份数学六年级下册第五章 基本平面图形综合与测试课后练习题,共24页。试卷主要包含了能解释,如图所示,点E,已知与满足,下列式子表示的角,如图,下列说法不正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练,共23页。试卷主要包含了在下列生活,下列说法正确的是,延长线段至点,分别取,下列说法等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后作业题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后作业题,共25页。