鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试
展开六年级数学下册第五章基本平面图形定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若的补角是,则的余角是( )
A. B. C. D.
2、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
3、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )
A.3cm B.4cm C.5cm D.6cm
4、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )
A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°
5、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.105° B.125° C.135° D.145°
6、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
7、如图,B岛在A岛南偏西55°方向,B岛在C岛北偏西60°方向, C岛在A岛南偏东30°方向.从B岛看A,C两岛的视角∠ABC度数为( )
A.50° B.55° C.60° D.65°
8、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )
A.1个 B.2个 C.3个 D.4个
10、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.两点之间,线段最短 B.两点确定一条直线
C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点、在直线上,点是直线外一点,可知,其依据是 _____.
2、由郑州开往北京的某单次列车,运行途中要停靠四个站,那么要为这单次列车制作的火车票有______种.
3、同一直线上有两条线段(A在B的左边,C在D的左边),M,N分别是的中点,若,,则_________.
4、已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27',则∠2=_____,∠3=_____.
5、已知点C,D在直线AB上,且,若,则CD的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.
(1)若∠COF=25°,求∠EOB的度数;
(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)
2、已知,OB为内部的一条射线.
(1)如图1,若OM平分,ON平分,求的度数;
(2)如图2,在内部,且,OF平分,OG平分(射线OG在射线OC左侧),求的度数;
(3)在(2)的条件下,绕点O运动过程中,若,则的度数.
3、如图,,是的平分线,是的平分线.
(1)若,求的度数;
(2)若与互补,求的度数.
4、已知:点C、D、E在直线AB上,且点D是线段AC的中点,点E是线段DB的中点,若点C在线段EB上,且DB=6,CE=1,求线段AB的长.
5、已知点A、B、C在同一条直线上,点M、N分别是AC、BC的中点,且AC=a,BC=b.
(1)如图①,若点C在线段AB上,a=4,b=6,求线段MN的长;
(2)若点C为线段AB上任一点,其它条件不变,请直接写出你的猜想结果,MN的长度为 (用含有a,b的代数式表示),不必说明理由;
(3)若点C在线段AB的延长线上,其它条件不变,请在图②中画出图形,试猜想MN的长度为 (用含有a,b的代数式表示,a>b),并说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
2、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
3、B
【解析】
【分析】
设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.
【详解】
解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,
∵M为AB的中点,
∴AM=BM,
即BM=(8﹣x)cm,
∵N为CB的中点,
∴CN=NB,
∴NB,
∴MC+NB=x+(4﹣x)=4(cm),
故选:B.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.
4、C
【解析】
【分析】
如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.
【详解】
解:∠α+∠β=180°﹣90°=90°,
故选:C.
【点睛】
本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.
5、B
【解析】
【分析】
由题意知计算求解即可.
【详解】
解:由题意知
故答案为:B.
【点睛】
本题考查了方位角的计算.解题的关键在于正确的计算.
6、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
7、D
【解析】
【分析】
根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.
【详解】
解:过点B作南北方向线DE,
∵B岛在A岛南偏西55°方向,
∴∠ABD=55°,
∵B岛在C岛北偏西60°方向,
∴∠CBE=60°,
∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.
故选D.
【点睛】
本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.
8、D
【解析】
【分析】
先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.
【详解】
解: C为AD的中点,
,则
故A不符合题意;
,则
同理: 故B不符合题意;
,则
同理: 故C不符合题意;
,则
同理: 故D符合题意;
故选D
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键
9、A
【解析】
【分析】
根据直线、线段、射线的区别逐项分析判断即可
【详解】
解:①图中只有直线BD,1条直线,原说法错误;
②图中共有2×3+1×2=8条射线,原说法错误;
③图中共有6条线段,即线段,原说法是正确的;
④图中射线BC与射线CD不是同一条射线,原说法错误.
故正确的有③,共计1个
故选:A.
【点睛】
本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.
10、A
【解析】
【分析】
根据两点之间线段最短的性质解答.
【详解】
解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选:A.
【点睛】
此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.
二、填空题
1、两点之间,线段最短
【解析】
【分析】
根据题意可知两点之间,线段和折线比较,线段最短
【详解】
解:点、在直线上,点是直线外一点,可知,其依据是
两点之间,线段最短
故答案为:两点之间,线段最短
【点睛】
本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.
2、15
【解析】
【分析】
郑州到北京中间停靠四站,共有5种车票;第一站到北京共有4种车票;第二站到北京共有3种车票;第三站到北京共有2种车票;第四站到北京共有1种车票;郑州到北京方向火车票共有5+4+3+2+1=15种.
【详解】
解:如图
由题意知:共有种
故答案为:15.
【点睛】
本题考查了线段.解题的关键是要考虑每个停靠站都发售火车票.
3、17
【解析】
【分析】
根据A在B的左边,C在D的左边,M,N分别是的中点,得出AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x, 得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.
【详解】
解:∵A在B的左边,C在D的左边,M,N分别是的中点,
∴AM=BM,CN=DN,
当点B在点C的右边时满足条件,分三种情况:
当点B在NM上,设AM=BM=x,
∴BN=MN-BM=5-x,
∴CN=BC+BN=7+5-x=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当MN在BC上,设AM=BM=x,
∴BN=x-5,CM=7-x,
∴CN=CM+MN=7-x+5=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当点C在MN上,设AM=BM=x,
∴MC=BM-BC=x-7,
∴CN=DN=MN-MC=5-(x-7)=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
综合得AD=17.
故答案为17.
【点睛】
本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.
4、
【解析】
【分析】
根据余角和补角的概念求出∠3,∠2与∠1的关系,把∠1的值代入计算即可.
【详解】
解:∵∠1与∠2互余,
∴∠2=90°﹣∠1,
∵∠1=33°27',
∠2=90°﹣
∵∠2与∠3互补,
∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,
∵∠1=,
∴∠3=,
故答案为:,.
【点睛】
本题考查了角的计算问题,掌握互余与互补的定义是解题的关键.
5、3或7或11
【解析】
【分析】
分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.
【详解】
解:如图,当在线段上,
,,
如图,当在的左边,在线段上,
,,
如图,当在的左边,在的右边,
,,
故答案为:3或7或11
【点睛】
本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)求出,再由角平分线计算求出,结合图形即可求出;
(2)求出,再由角平分线计算求出,结合图形即可求出.
(1)
∵,,
∴,
∵OF平分,
∴,
∵,
∴;
(2)
∵,,
∴,
∵OF平分,
∴,
∵,
∴.
【点睛】
题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.
2、 (1)80°;
(2)70°
(3)42°或
【解析】
【分析】
(1)根据角平分线的性质证得,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分,求出,即可求出的度数;
(3)分两种情况:①当OF在OB右侧时,由,,求得∠COF的度数,利用OF平分,得到∠AOC的度数,得到∠BOD的度数,根据OG平分,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分,ON平分,
∴,
∴=;
(2)
解:设∠BOF=x,
∵,
∴∠COF=20°+x,
∵OF平分,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分,
∴,
∴=;
(3)
解:当OF在OB右侧时,如图,
∵,,
∴∠COF=28°,
∵OF平分,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分,
∴,
∴=.
当OF在OB左侧时,如图,
∵,,
∴∠COF=12°,
∵OF平分,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分,
∴,
∴=.
∴的度数为42°或.
【点睛】
此题考查了几何图形中角度的计算,角平分线的性质,正确掌握角平分线的性质及图形中各角度之间的位置关系进行计算是解题的关键.
3、 (1)50°
(2)60°
4、线段的长为10
【解析】
【分析】
由题意知, ,,,将各值代入计算即可.
【详解】
解:∵点E是线段的中点,且
∴
∵
∴
∵点D是线段的中点
∴
∴.
【点睛】
本题考查了线段的中点.解题的关键在于正确的表示线段的数量关系.
5、 (1)线段MN的长为5;
(2);
(3),图见解析,理由见解析.
【解析】
【分析】
(1)根据线段中点可得,,结合图形求解即可得;
(2)根据线段中点的性质可得,,结合图形求解即可得;
(3)根据题意,作出图形,然后根据线段中点的性质求解即可得.
(1)
解:∵ 点M、N分别是AC、BC的中点,
∴ ,,
∴ ;
(2)
解:∵ 点M、N分别是AC、BC的中点,,,
∴ ,,
∴ ,
故答案为:;
(3)
猜想:;理由如下:
如图所示:
∵ 点M、N分别是AC、BC的中点
∴
∴ ,
故答案为:.
【点睛】
题目主要考查线段中点及求线段长度,理解题意,结合图形进行分析是解题关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题,共26页。试卷主要包含了图中共有线段,如图,射线OA所表示的方向是,如图,下列说法不正确的是,如图所示,点E等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了已知,则的补角等于,下列说法中正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共19页。试卷主要包含了在下列生活,若的补角是,则的余角是等内容,欢迎下载使用。