鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后测评
展开六年级数学下册第五章基本平面图形综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
2、在一幅七巧板中,有我们学过的( )
A.8个锐角,6个直角,2个钝角 B.12个锐角,9个直角,2个钝角
C.8个锐角,10个直角,2个钝角 D.6个锐角,8个直角,2个钝角
3、下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段 ,则点是线段的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是 ( )
A.(1)(2)(3) B.(1)(4) C.(2)(3) D.(1)(2)(4)
4、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
5、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
6、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
7、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
8、用度、分,秒表示22.45°为( )
A.22°45′ B.22°30′ C.22°27′ D.22°20′
9、若,则的补角的度数为( )
A. B. C. D.
10、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.
2、90°-32°51′18″=______________.
3、如图,点C是线段上任意一点(不与端点重合),点M是中点,点P是中点,点Q是中点,则下列说法:①;②;③;④.其中正确的是_______.
4、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.
5、如图,已知点C为上一点,,D,E分别为,的中点,则的长为_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知A,B,C,D四点,按下列要求画图形:
(1)画射线CD;
(2)画直线AB;
(3)连接DA,并延长至E,使得AE=DA.
2、如图,点C为线段AB的中点,点E为线段AB上的点,D为AE的中点,若AB=15,CE=4.5,求线段DE.
3、已知,OB为内部的一条射线.
(1)如图1,若OM平分,ON平分,求的度数;
(2)如图2,在内部,且,OF平分,OG平分(射线OG在射线OC左侧),求的度数;
(3)在(2)的条件下,绕点O运动过程中,若,则的度数.
4、如图,已知线段AB
(1)请按下列要求作图:
①延长线段AB到C,使;
②延长线段BA到D,使;
(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;
(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.
5、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
2、B
【解析】
【分析】
根据一副七巧板图形,查出锐角,直角和钝角的个数即可.
【详解】
5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,
在一幅七巧板中根据12个锐角,9个直角,2个钝角.
故选择B.
【点睛】
本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.
3、B
【解析】
【分析】
根据两点之间线段最短,数轴上两点间的距离的定义求解,线段的中点的定义,直线的性质对各小题分析判断即可得解.
【详解】
解:(1)在所有连结两点的线中,线段最短,故此说法正确;
(2)连接两点的线段的长度叫做这两点的距离,故此说法错误;
(3)若线段AC=BC,则点C不一定是线段AB的中点,故此说法错误;
(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,故此说法正确;
综上所述,说法正确有(1)(4).
故选:B.
【点睛】
本题考查了线段的性质、两点间的距离的定义,线段的中点的定义,直线的性质等,是基础题,熟记各性质与概念是解题的关键.
4、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
5、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
6、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
7、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
8、C
【解析】
【分析】
将化成即可得.
【详解】
解:∵,
∴,
故选:C.
【点睛】
题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.
9、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
10、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
二、填空题
1、6或22##22或6
【解析】
【分析】
根据两点间的距离,分情况讨论C点的位置即可求解.
【详解】
解:∵,
∴点C不可能在A的左侧,
如图1,当C点在A、B之间时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=3k,BD=k,
∴CD=k+k=k,
∵CD=11,
∴k=11,
∴k=2,
∴AB=6;
如图2,当C点在点B的右侧时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=k,BD=k,
∴CD=k-k=k,
∵CD=11,
∴k=11,
∴k=22,
∴AB=22;
∴综上所述,AB=6或22.
【点睛】
本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.
2、
【解析】
【分析】
根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.
【详解】
解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″.
故答案为:57°8′42″.
【点睛】
本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.
3、①②④
【解析】
【分析】
根据线段中点的定义得到,,,然后根据线段之间的和差倍分关系逐个求解即可.
【详解】
解:∵M是中点,
∴,
∵P是中点,
∴,
∵点Q是中点,
∴,
对于①:,故①正确;
对于②:,
,故②正确;
对于③:,
而,
故③错误;
对于④:,
,故④正确;
故答案为:①②④.
【点睛】
此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
4、16或4##4或16
【解析】
【分析】
分两种情况讨论,当在的右边时,当在的左边时,再结合线段的和差可得答案.
【详解】
解:如图,当在的右边时,AB=10cm,BC=6cm,
cm,
如图,当在的左边时,AB=10cm,BC=6cm,
cm,
故答案为:16或4
【点睛】
本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.
5、3
【解析】
【分析】
根据AC=12cm,CB=AC,得到CB=6cm,求得AB=18cm,根据D、E分别为 AC、AB的中点,分别求得AE,AD的长,利用线段的差,即可解答.
【详解】
解:∵AC=12cm,CB=AC,
∴CB=6cm,
∴AB=AC+BC=12+6=18cm,
∵D、E分别为AC、AB的中点,
∴AE=AB=9cm,
AD=AC=6cm,
∴DE=AE﹣AD=3cm.
故答案为3.
【点睛】
本题考查了线段的中点和线段的和差,熟知各线段之间的和、差及倍数关系是解答此题的关键.
三、解答题
1、 (1)见解析
(2)见解析
(3)见解析
【解析】
【分析】
(1)画射线CD即可;
(2)画直线AB即可;
(3)连接DA,并延长至E,使得AE=DA即可.
(1)
解:如图所示,射线CD即为所求作的图形;
(2)
解:如图所示,直线AB即为所求作的图形;
(3)
解:如图所示,连接DA,并延长至E,使得AE=DA.
【点睛】
本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.
2、6
【解析】
【分析】
利用线段中点的含义先求解 再利用线段的和差关系求解 结合D为AE的中点,从而可得答案.
【详解】
解: AB=15,点C为线段AB的中点,
D为AE的中点,
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.
3、 (1)80°;
(2)70°
(3)42°或
【解析】
【分析】
(1)根据角平分线的性质证得,即可得到答案;
(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分,求出,即可求出的度数;
(3)分两种情况:①当OF在OB右侧时,由,,求得∠COF的度数,利用OF平分,得到∠AOC的度数,得到∠BOD的度数,根据OG平分,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.
(1)
解:∵OM平分,ON平分,
∴,
∴=;
(2)
解:设∠BOF=x,
∵,
∴∠COF=20°+x,
∵OF平分,
∴∠AOC=2∠COF=40°+2x,
∴∠COD=∠AOD-∠AOC=140°-2x,
∵OG平分,
∴,
∴=;
(3)
解:当OF在OB右侧时,如图,
∵,,
∴∠COF=28°,
∵OF平分,
∴∠AOC=2∠COF=56°,
∴∠COD=∠AOD-∠AOC=104°,
∴∠BOD=124°,
∵OG平分,
∴,
∴=.
当OF在OB左侧时,如图,
∵,,
∴∠COF=12°,
∵OF平分,
∴∠AOC=2∠COF=24°,
∴∠COD=∠AOD-∠AOC=136°,
∴∠BOD=156°,
∵OG平分,
∴,
∴=.
∴的度数为42°或.
【点睛】
此题考查了几何图形中角度的计算,角平分线的性质,正确掌握角平分线的性质及图形中各角度之间的位置关系进行计算是解题的关键.
4、 (1)①画图见解析;②画图见解析
(2)BD=1.5AC;
(3)cm,cm
【解析】
【分析】
(1)①先延长 再作即可;②先延长 再作即可;
(2)先证明 从而可得答案;
(3)由 结合 从而可得答案.
(1)
解:如图所示,BC、AD即为所求;
(2)
解:
(3)
解:∵AB=2cm,
∴AC=2AB=4cm,
∴AD=4cm,
∴BD=4+2=6cm,
∴CD=2AD=8cm.
【点睛】
本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.
5、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试,共21页。试卷主要包含了如图,OM平分,,,则等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试巩固练习: 这是一份初中数学第五章 基本平面图形综合与测试巩固练习,共23页。试卷主要包含了下列四个说法,如图,一副三角板,能解释,如图,D等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步达标检测题,共21页。试卷主要包含了如图所示,由A到B有①,下列说法,下列说法正确的是等内容,欢迎下载使用。