![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题01](http://img-preview.51jiaoxi.com/2/3/12733865/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题02](http://img-preview.51jiaoxi.com/2/3/12733865/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试试题03](http://img-preview.51jiaoxi.com/2/3/12733865/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学六年级下册第五章 基本平面图形综合与测试精品单元测试课后复习题
展开六年级数学下册第五章基本平面图形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.正数与负数互为相反数 B.如果x2=y2,那么x=y
C.过两点有且只有一条直线 D.射线比直线小一半
2、已知,则的补角等于( )
A. B. C. D.
3、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
4、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间) B.点B与点D重合
C.点B在线段CD的延长线上 D.点B在线段DC的延长线上
6、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
7、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
8、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )
A.2 B.4 C.6 D.8
9、下列说法中正确的是( )
A.两点之间直线最短 B.单项式πx2y的系数是
C.倒数等于本身的数为±1 D.射线是直线的一半
10、下列各角中,为锐角的是( )
A.平角 B.周角 C.直角 D.周角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,线段,点是线段上一点,点、分别是、的中点,则的长为__________.
2、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.
3、在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)
4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.
5、如图,点C、D在线段AB上,线段,若线段,,则线段CD的长度为______cm.
三、解答题(5小题,每小题10分,共计50分)
1、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.
(1)如图(2),设,当平分时,求(用表示)
(2)若,
①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.
②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.
2、如图,、两点把线段分成三部分,,为的中点.
(1)判断线段与的大小关系,说明理由.
(2)若,求的长.
3、如图①,将一副常规直角三角尺的直角顶点叠放在一起,,.解答下列问题.
(1)若∠DCE=35°24',则∠ACB= ;若∠ACB=115°,则∠DCE= ;
(2)当∠DCE=α时,求∠ACB的度数,并直接写出∠DCE与∠ACB的关系;
(3)在图①的基础上作射线BC,射线EC,射线DC,如图②,则与∠ECB互补的角有 个.
4、如图甲,已知线段,,线段CD在线段AB上运动,E,F分别是AC,BD的中点.
(1)若,则______;
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由;
(3)①对于角,也有和线段类似的规律.如图乙,已知在内部转动,OE,OF分别平分和,若,,求;
②请你猜想,和会有怎样的数量关系,直接写出你的结论.
5、如图1,OA⊥OB,∠COD=60°.
(1)若∠BOC=∠AOD,求∠AOD的度数;
(2)若OC平分∠AOD,求∠BOC的度数;
(3)如图2,射线OB与OC重合,若射线OB以每秒15°的速度绕点O逆时针旋转,同时射线OC以每秒10°的速度绕点O顺时针旋转,当射线OB与OA重合时停止运动.设旋转的时间为t秒,请直接写出图中有一条射线平分另外两条射线所夹角时t的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
2、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
3、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
4、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
5、C
【解析】
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
∴点B在线段CD的延长线上,
故选:C.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.
6、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
7、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
8、A
【解析】
【分析】
根据线段中点的定义计算即可.
【详解】
解:∵点C是线段AB的中点,
∴AC=,
又∵点D是线段AC的中点,
∴CD=,
故选:A.
【点睛】
本题考查了线段中点的定义,掌握线段中点的定义是关键.
9、C
【解析】
【分析】
分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.
【详解】
解:A.两点之间线段最短,故不符合题意;
B.单项式πx2y的系数是,不符合题意;
C.倒数等于本身的数为±1,故符合题意;
D.射线是是直线的一部分,故不符合题意;
故选:C.
【点睛】
本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.
10、B
【解析】
【分析】
求出各个选项的角的度数,再判断即可.
【详解】
解:A. 平角=90°,不符合题意;
B. 周角=72°,符合题意;
C. 直角=135°,不符合题意;
D. 周角=180°,不符合题意;
故选:B.
【点睛】
本题考查了角的度量,解题关键是明确周角、平角、直角的度数.
二、填空题
1、6.5
【解析】
【分析】
根据中点的性质得出MN=AB即可.
【详解】
∵点、分别是、的中点
∴MC=AC;CN=BC,
∴MN=MC+CN
=AC+BC
=
=
=6.5cm
故答案为6.5.
【点睛】
本题考查了线段中点的定义和性质,解题的关键是熟练应用中点的性质进行计算.
2、40
【解析】
【分析】
设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.
【详解】
解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,
由题意可知:180-x=3(90-x)-10,
解出:x=40,
故答案为:40.
【点睛】
本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.
3、或
【解析】
【分析】
分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.
【详解】
①当射线OD、OE在直线AB的同侧时,如图所示
∵OC为∠AOE的平分线
∴∠1=∠2
∵∠AOE+∠BOE=180°,∠BOE=α
∴∠AOE=180°−α
∴
∴
②当射线OD、OE在直线AB的异侧时,如图所示
∵OC为∠AOE的平分线
∴∠1=∠2
∵∠AOE+∠BOE=180°,∠BOE=α
∴∠AOE=180°−α
∴
∴
综上所述,∠COD=或.
故答案为:或
【点睛】
本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.
4、八
【解析】
【分析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.
【详解】
解:由题意得,n-2=6,
解得:n=8,
故答案为:八.
【点睛】
本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.
5、7
【解析】
【分析】
由,得出的长度, ,从而得出CD的长度
【详解】
,
故答案为7
【点睛】
本题主要考查线段的和与差及线段两点间的距离,熟练运用线段的和与差计算方法进行求解是解决本题的关键.
三、解答题
1、 (1)
(2)①,理由见解析;②4秒或22秒
【解析】
【分析】
(1)利用角的和差关系求解 再利用角平分线的含义求解即可;
(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.
(1)
解:
∵平分
∴
(2)
解:①设,则,
∴
∴,
∴
②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.
如图,当时 ,,
则,
∴
如图,当时 ,,
则,方程无解,不成立
如图,当时,,,
则,
∴
综上所述秒或22秒
【点睛】
本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.
2、 (1),见解析
(2)50
【解析】
【分析】
(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;
(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.
(1)
.理由如下:
设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,
∵M为AD的中点,
∴AM=DM=AD=5x,
∴CM=DM-CD=5x-3x=2x,
∴AB=CM;
(2)
∵CM=10cm,CM=2x,
∴2 x=10,
解得x=5,
∴AD=10x=50cm.
【点睛】
本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.
3、 (1);
(2),与互为补角
(3)5
【解析】
【分析】
(1)根据三角板中的特殊角,以及互余的意义可求答案;
(2)方法同(1)即可得出结论;
(3)利用直角的意义,互补的定义可得出结论.
(1)
解:,
,
;
,,
,
,
故答案为:;;
(2)
解:,
,
;
,即与互补;
(3)
解:由图可知,
,
与互补的角有5个;
故答案为:5.
【点睛】
本题考查三角板的特殊内角,补角的定义及余角的定义,解题的关键是掌握互余和互补的定义和三角板的内角度数.
4、 (1)12
(2)不变;
(3)①90°;②
【解析】
【分析】
(1)根据线段中点推理表示EF的长度即可;
(2)根据,再根据中点进行推导即可;
(3)①根据再结合角平分线进行计算;
②由①可以得到结论.
(1)
∵E,F分别是AC,BD的中点,
∴EC=AC,DF=DB.
∴EC+DF=AC+DB= (AC+DB).
又∵AB=20cm,CD=4cm,
∴AC+DB=AB-CD=20-4=16(cm).
∴EC+DF= (AC+DB)=8(cm).
∴EF=EC+DF+CD=8+4=12(cm).
故答案为:12.
(2)
EF的长度不变.
(3)
①∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
②,理由如下:
∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
【点睛】
本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.
5、 (1)∠AOD的度数是105°
(2)∠BOC的度数是30°
(3)图中有一条射线平分另外两条射线所夹角时t的值为1或或.
【解析】
【分析】
(1)根据角的和差表示出∠BOC=60°-∠BOD=60°-(∠AOD-90°)=150°-∠AOD,由已知条件可得方程,解方程即可得∠AOD的度数;
(2)根据角平分线的定义得∠AOC=∠COD=60°,∠AOD的度数,根据角的和差可得∠BOD的度数,即可求得∠BOC的度数;
(3)根据题意求出OB与OA重合时,OC与OD也重合,此时停止运动,然后分三种情况讨论即可求解.
(1)
解:∵∠COD=60°,
∴∠BOC=∠COD﹣∠BOD=60°﹣∠BOD,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,
∴∠BOC=60°﹣∠BOD=60°﹣(∠AOD﹣90°)=150°﹣∠AOD,
∵∠BOC=∠AOD,
∴150°﹣∠AOD=∠AOD,
解得:∠AOD=105°,
故∠AOD的度数是105°;
(2)
解:∵OC平分∠AOD,∠COD=60°,
∴∠AOC=∠COD=60°,
∴∠AOD=∠AOC+∠COD=60°+60°=120°,
∴∠BOD=∠AOD﹣∠AOB=120°﹣90°=30°,
∴∠BOC=∠COD﹣∠BOD=60°﹣30°=30°,
故∠BOC的度数是30°;
(3)
解:根据题意,可得:
∠AOD=90°+60°=150°,
∠AOB=90°﹣15°t,
∠AOC=90°+10°t,
当OB与OA重合时,∠AOB=0°,
即0°=90°﹣15°t,解得:t=6,
此时,∠AOC=90°+10°t=90°+10°×6=150°=∠AOD,即OC与OD重合,
∴当OB与OA重合时,OC与OD也重合,此时停止运动,
∴分三种情况讨论:
①当OB平分∠AOD时:
∵∠AOB=∠AOD=×150°=75°,
∴90°﹣15°t=75°,
解得:t=1;
②当OC平分∠BOD时:
∠BOC=∠AOC﹣∠AOB=(90°+10°t)﹣(90°﹣15°t)=25°t,
∠COD=∠AOD﹣∠AOC=150°﹣(90°+10°t)=60°﹣10°t,
解得:t=;
③当OB平分∠AOC时:
由②知,∠BOC=25°t,
∵∠AOB=∠BOC,
∴90°﹣15°t=25°t,
解得:t=.
综上,图中有一条射线平分另外两条射线所夹角时t的值为1或或.
【点睛】
此题主要考查角的计算,角平分线的定义,以及一元一次方程的应用,解题的关键是根据题意找到等量关系求解.
数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题: 这是一份数学六年级下册第五章 基本平面图形综合与测试精品当堂达标检测题,共24页。试卷主要包含了如图,D,能解释,已知,则的补角等于等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品巩固练习: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品巩固练习,共25页。试卷主要包含了下列现象等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题,共18页。试卷主要包含了下列说法错误的是,在下列生活,下列各角中,为锐角的是等内容,欢迎下载使用。