鲁教版 (五四制)第五章 基本平面图形综合与测试精品课时训练
展开六年级数学下册第五章基本平面图形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点N为线段AM上一点,线段.第一次操作:分别取线段AM和AN的中点,;第二次操作:分别取线段和的中点,;第三次操作:分别取线段和的中点,;……连续这样操作,则第十次操作所取两个中点形成的线段的长度为( )
A. B. C. D.
2、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )
A.2 B.2.5 C.3 D.3.5
3、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )
A. B.
C. D.
4、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间) B.点B与点D重合
C.点B在线段CD的延长线上 D.点B在线段DC的延长线上
6、下列命题中,正确的有( )
①两点之间线段最短; ②角的大小与角的两边的长短无关;
③射线是直线的一部分,所以射线比直线短.
A.0个 B.1个 C.2个 D.3个
7、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )
A.两点确定一条直线 B.两点之间,线段最短
C.射线只有一个端点 D.过一点有无数条直线
8、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.105° B.125° C.135° D.145°
9、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )
A.2 B.4 C.6 D.8
10、若的补角是,则的余角是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,则射线表示是南偏东__________的方向.
2、在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)
3、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.
4、如果一个角的补角是,那么这个角的度数是________.
5、如图所示,点C在线段上,,点D是线段的中点.若,则的长为________.
三、解答题(5小题,每小题10分,共计50分)
1、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.
(1)①画直线AB;
②画射线BC;
③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;
(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .
2、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON=_______,∠AON=_______;
(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;
(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?
3、将一副三角板放在同一平面内,使直角顶点重合于点O.
(1)如图①,若,则_______,与的关系是_______;
(2)如图②,固定三角板不动,将三角板绕点O旋转到如图所示位置.
①(1)中你发现的与的关系是否仍然成立,请说明理由;
②如图②,若,在内画射线,设,探究发现随着x的值的变化,图中以O为顶点的角中互余角的对数也变化.请直接写出以O为顶点的角中互余角的对数有哪几种情况?并写出每一种情况相应的x的取值或取值范围.
4、如图,平分,平分.若,.
(1)求出的度数;
(2)求出的度数,并判断与的数量关系是互补还是互余.
5、已知点A、B、C在同一条直线上,点M、N分别是AC、BC的中点,且AC=a,BC=b.
(1)如图①,若点C在线段AB上,a=4,b=6,求线段MN的长;
(2)若点C为线段AB上任一点,其它条件不变,请直接写出你的猜想结果,MN的长度为 (用含有a,b的代数式表示),不必说明理由;
(3)若点C在线段AB的延长线上,其它条件不变,请在图②中画出图形,试猜想MN的长度为 (用含有a,b的代数式表示,a>b),并说明理由.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,再由M2N2的长度求出M2N2的长度,从而找到规律,即可求出MnNn的结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1-AN1
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2-AN2
∵线段AM2和AN2的中点M3,N3;
∴M3N3=AM3-AN3
.......
∴
∴
故选:A.
【点睛】
本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出是解题关键.
2、C
【解析】
【分析】
由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.
【详解】
解:∵,,
∴BC=12,
∴AC=AB+BC=18,
∵D是AC的中点,
∴,
∴BD=AD-AB=9-6=3,
故选:C.
【点睛】
此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.
3、B
【解析】
【分析】
先求解利用角平分线的定义再求解从而可得答案.
【详解】
解:
平分
故选B
【点睛】
本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.
4、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
5、C
【解析】
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
∴点B在线段CD的延长线上,
故选:C.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.
6、C
【解析】
【分析】
利用线段的性质、角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:①两点之间线段最短,正确,符合题意;
②角的大小与角的两边的长短无关,正确,符合题意;
③射线是直线的一部分,射线和直线都无法测量长度,故错误,不符合题意,正确的有2个,
故选:C.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解线段的性质、角的定义等知识,难度不大.
7、A
【解析】
【分析】
两个学生看成点,根据两点确定一条直线的知识解释即可.
【详解】
∵两点确定一条直线,
∴选A.
【点睛】
本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.
8、B
【解析】
【分析】
由题意知计算求解即可.
【详解】
解:由题意知
故答案为:B.
【点睛】
本题考查了方位角的计算.解题的关键在于正确的计算.
9、A
【解析】
【分析】
根据线段中点的定义计算即可.
【详解】
解:∵点C是线段AB的中点,
∴AC=,
又∵点D是线段AC的中点,
∴CD=,
故选:A.
【点睛】
本题考查了线段中点的定义,掌握线段中点的定义是关键.
10、B
【解析】
【分析】
直接利用一个角的余角和补角差值为90°,进而得出答案.
【详解】
解:∵∠α的补角等于130°,
∴∠α的余角等于:130°-90°=40°.
故选:B.
【点睛】
本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.
二、填空题
1、
【解析】
【分析】
如图,利用互余的含义,先求解的大小,再根据方向角的含义可得答案.
【详解】
解:如图,
射线表示是南偏东的方向.
故答案为:
【点睛】
本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.
2、或
【解析】
【分析】
分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.
【详解】
①当射线OD、OE在直线AB的同侧时,如图所示
∵OC为∠AOE的平分线
∴∠1=∠2
∵∠AOE+∠BOE=180°,∠BOE=α
∴∠AOE=180°−α
∴
∴
②当射线OD、OE在直线AB的异侧时,如图所示
∵OC为∠AOE的平分线
∴∠1=∠2
∵∠AOE+∠BOE=180°,∠BOE=α
∴∠AOE=180°−α
∴
∴
综上所述,∠COD=或.
故答案为:或
【点睛】
本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.
3、40
【解析】
【分析】
设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.
【详解】
解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,
由题意可知:180-x=3(90-x)-10,
解出:x=40,
故答案为:40.
【点睛】
本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.
4、60°##60度
【解析】
【分析】
根据和为180度的两个角互为补角求解即可.
【详解】
解:根据定义一个角的补角是120°,
则这个角是180°-120°=60°,
故答案为:60°.
【点睛】
本题考查了补角的定义,掌握补角的定义是解题的关键.
5、
【解析】
【分析】
先求解 再利用线段的和差关系求解 再利用线段的中点的含义求解即可.
【详解】
解:
点D是线段的中点,
故答案为:
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系”是解本题的关键.
三、解答题
1、 (1)①见解析,②见解析,③见解析
(2)图见解析,两点之间,线段最短
【解析】
【分析】
(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.
(1)
①如图所示:连接AB作直线即可;
②连接BC并延长即为射线BC;
③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)
画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,
故答案为:两点之间,线段最短.
【点睛】
题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.
2、 (1)144°,66°
(2)秒或10秒
(3)当0<t<时,的值是1;当<t<6时,的值不是定值
【解析】
【分析】
(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;
(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;
(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.
(1)
由题意得:
当t=2时,
∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,
∠AON=∠AOD-∠DON=90°-24°=66°,
故答案为:144°,66°;
(2)
当ON与OA重合时,t=90÷12=7.5(s)
当OM与OA重合时,t=180°÷15=12(s)
如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°
由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=,
②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,
综上,t的值为秒或10秒;
(3)
当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90+12t=180,解得t=,
如图所示,①当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,
∴(定值),
②当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,
,
∴(不是定值).
综上所述,当0<t<时,的值是1;当<t<6时,的值不是定值.
【点睛】
本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
3、 (1)25 ,互补
(2)①成立 ,理由见解析;②共有3种情况,当x=35时,互余的角有4对;当x=20时,互余的角有6对;当0< x <50且x≠35和20时,互余的角有3对
【解析】
【分析】
(1)利用周角的定义可得再求解 即可得到答案;
(2)①利用结合角的和差运算即可得到结论;②先利用 求解 再分三种情况讨论:如图,当时,则 如图,当时,则 如图,当且时,从而可得答案.
(1)
解:
而
故答案为:, 互补
(2)
解:①成立,理由如下:
②
如图,当时,则
所以图中以为顶点互余的角有:;;
;共4对;
如图,当时,则
所以图中以为顶点互余的角有:;;
;;;共6对;
如图,当且时,
所以图中以为顶点互余的角有:;;共3对.
【点睛】
本题考查的是几何图形中角的和差运算,互余与互补的含义,熟练的运用互余与互补的概念判断余角与补角,清晰的分类讨论是解本题的关键.
4、 (1)
(2),互补
【解析】
【分析】
(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;
(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.
(1)
解:∵平分,,
∴,又∵,
∴;
(2)
解:∵平分,平分,,
∴,,
∴,
∴,
∴与的数量关系是互补.
【点睛】
本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
5、 (1)线段MN的长为5;
(2);
(3),图见解析,理由见解析.
【解析】
【分析】
(1)根据线段中点可得,,结合图形求解即可得;
(2)根据线段中点的性质可得,,结合图形求解即可得;
(3)根据题意,作出图形,然后根据线段中点的性质求解即可得.
(1)
解:∵ 点M、N分别是AC、BC的中点,
∴ ,,
∴ ;
(2)
解:∵ 点M、N分别是AC、BC的中点,,,
∴ ,,
∴ ,
故答案为:;
(3)
猜想:;理由如下:
如图所示:
∵ 点M、N分别是AC、BC的中点
∴
∴ ,
故答案为:.
【点睛】
题目主要考查线段中点及求线段长度,理解题意,结合图形进行分析是解题关键.
数学六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份数学六年级下册第五章 基本平面图形综合与测试同步测试题,共26页。试卷主要包含了已知,则∠A的补角等于,如图所示,点E等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共19页。试卷主要包含了在9,下列各角中,为锐角的是等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后作业题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后作业题,共28页。试卷主要包含了如图,一副三角板,若,则的补角的度数为,延长线段至点,分别取等内容,欢迎下载使用。