高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.1(学生版)
展开一、选择题
1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )
A.21种 B.315种 C.143种 D.153种
2.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.( )
A.8 B.12 C.14 D.9
3.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )
A.16种 B.18种 C.37种 D.48种
4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( )
A.42 B.30 C.20 D.12
5.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )
A.10种 B.25种 C.52种 D.24种
6.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 ( )
A.60 B.48 C.36 D.24
7.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )
A.243 B.252 C.261 D.279
8.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个 C.12个 D.9个
9.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,若从三名工人中选2名分别去操作以上车床,则不同的选派方法有( )
A.6种 B.5种 C.4种 D.3种
10.若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有( )
A.12对 B.18对 C.24对 D.30对
二、填空题
11.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.
12.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3802=3936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1942的“简单的”有序对的个数是________.
13.已知数列{an}是公比为q的等比数列,集合A={a1,a2,…,a10},从A中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列的个数为________.
14.如图,一个地区分为5个行政区域,现给地图着色,若要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有________种(用数字作答).
三、解答题
15.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,则不同的放法有多少种?
16.用n(n∈N*)种不同颜色给如图的4个区域涂色,要求相邻区域不能用同一种颜色.
(1)当n=6时,图①、图②各有多少种涂色方案?(要求:列式或简述理由,结果用数字作答)
(2)若图③有180种涂色法,求n的值.
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.9(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.9(学生版),共8页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.8(学生版),共8页。
高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版): 这是一份高考数学(理数)一轮课后刷题练习:第10章 计数原理、概率、随机变量及其分布10.7(学生版),共8页。