终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布同步测试试卷(精选)

    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布同步测试试卷(精选)第1页
    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布同步测试试卷(精选)第2页
    2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布同步测试试卷(精选)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练,共20页。试卷主要包含了篮球队5名场上队员的身高,一组数据等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据:1,3,3,4,5,它们的极差是(    A.2 B.3 C.4 D.52、已知一组数据的方差s2[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](ab为常数),则a+b的值为(  )A.5 B.7 C.10 D.113、用计算器计算方差时,要首先进入统计计算状态,需要按键(    A. B.C. D.4、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的(    A.众数 B.中位数 C.平均数 D.方差5、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高(    A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大6、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是(    A.众数 B.中位数 C.平均数 D.方差7、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是(    A. B. C. D.8、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是(    A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.49、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(    ).A.4 B.5 C.6 D.710、在对一组样本数据进行分析时,小华列出了方差的计算公式S2,下列说法错误的是(    A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某舞蹈队8名队员的身高(单位:厘米)如下:163,164,164,165,165,166,166,167.计算这些队员的身高的方差记为S12,这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,再次计算所得身高的方差记为S22.则S12S22的大小关系是___(选填“>”“<”或“=”).2、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,则在本次训练中,运动员__________的成绩更稳定.3、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.4、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊____只.5、已知一组数据x1x2x3x4x5的平均数是2,方差是5,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差的和为_______.三、解答题(5小题,每小题10分,共计50分)1、在推进城乡生活垃圾分类的行动中,社区从两个小区各随机选择50位居民进行问卷调查,并得到他们的成绩,将成绩定为“不了解”,为“比较了解”,为“非常了解”,并绘制了如图的统计图:(每一组不包含前一个边界值,包含后一个边界值)已知小区共有常住居民500人,小区共有常住居民400人,(1)请估计整个小区达到“非常了解”的居民人数.(2)将“比较了解”和“非常了解”的人数作为普及到位的居民,请估计整个小区普及到位的居民人数.(3)你认为哪个小区垃圾分类的普及工作更出色?请通过计算并用合适的数据来说明.2、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中   年级成绩更平衡,更稳定;(2)直接写出上述abc的值:a   b   c   d   (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数3、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷, 随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图, 请结合图中所给的信息解答下列问题: (1) 这次活动共调查了_______人; 在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______(2)请将条形统计图补充完整; (3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?(4)根据上图, 你可以获得什么信息?5、为迎接中国共产党建党100周年,某校开展了以“不忘初心跟党走”为主题的读书活动,学校对本校八年级学生9月份“阅读该主题相关书籍的读书量”(简称“读书量”)进行了随机抽样调查,对所有随机抽取学生的“读书量”(单位:本)进行了统计,并将调查结果绘制成如下两幅不完整的统计图.(1)请直接补全条形统计图;(2)本次所抽取学生9月份“读书量”的众数为     本,中位数为     本;(3)根据抽样调查的结果,请你估计该校八年级1000名学生中,9月份“读书量”不少于4本的学生人数. -参考答案-一、单选题1、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.2、D【分析】根据方差的定义得出这组数据为6,10,ab,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,ab,8,其平均数为7,
    ×(6+10+ab+8)=7,
    ab=11,
    故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.3、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.4、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.5、A【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为=192.8,
    则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
    新数据的平均数为=192,
    则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
    所以平均数变小,方差变小,
    故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.6、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.7、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.8、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
    故选:B【点睛】此题主要考查了频率,关键是掌握计算方法.9、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
    又∵组距为4,
    ∵20÷4=5,
    ∴应该分成5+1=6组.
    故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.10、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.二、填空题1、=【分析】根据方差的计算公式分别求出S12S22,再比较即可.【详解】解:舞蹈队8名队员身高的平均数为:×(163+164×2+165×2+166×2+167)=165,S12×[(163−165)2+2×(164−165)2+2×(165−165)2+2×(166−165)2+(167−165)2]=1.5;这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,所得数据为:166,167,167,168,168,169,169,170,这组新数据的平均数为:×(166+167×2+168×2+169×2+170)=168,S22×[(166−168)2+2×(167−168)2+2×(168−168)2+2×(169−168)2+(170−168)2]=1.5;S12S22,故答案为:=.【点睛】本题考查了方差的定义:一般地设n个数据,x1x2,…xn的平均数为,则方差S2[(x12+(x22+…+(xn2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、300【分析】设池塘大约有x只,根据题意,得到,计算即可.【详解】设池塘大约有x只,根据题意,得到解得 x=300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.4、400【分析】设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.【详解】设这个地区有黄羊x只,由题意得解得则估计这个地区有黄羊400只.故答案为:400【点睛】本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.5、49【分析】根据平均数及方差知识,直接计算即可.【详解】∵数据的平均数是2,,即的平均数为:∵数据的方差是5,即,的方差为:平均数和方差的和为故答案为:49.【点睛】本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.三、解答题1、(1)96人;(2)250人;(3)B小区垃圾分类的普及工作更出色,见解析【分析】(1)用整个B小区总人数乘以样本中“非常了解”的人数的百分比,即可估计整个B小区达到“非常了解”的居民人数;(2)用整个A小区总人数乘以样本中“比较了解”和“非常了解”的人数的频率,即可估计整个A小区普及到位的居民人数;(3)计算出两个小区样本“不了解”的人数的百分比,用样本估计总体.【详解】解:(1)估计整个小区达到“非常了解”的居民人数有:(人); (2)整个小区普及到位的居民人数有:(人);(3)整个小区“不了解”的:整个小区“不了解”的44%.因为44%<50%所以小区垃圾分类的普及工作更出色.【点睛】本题考查了用样本估计总体,调查收集数据的过程与方法,解决本题的关键是掌握用样本估计总体.2、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;
    (2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
    (3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.【详解】(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
    ∴八年级成绩的方差小于七年级成绩的方差,
    ∴八年级成绩更平衡,更稳定;
    故答案为:八;
    (2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
    a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=
    将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
    则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,
    故答案为:40;91.4;93;96;
    (3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.3、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)200;;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)见解析;(2)3,3;(3)估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人.【分析】(1)由2本人数及其所占百分比可得总人数,再根据百分比之和为1求出读书4本的人数所占百分比,最后乘以总人数得到其人数即可补全图形;(2)根据众数、中位数的定义即可得出答案;(3)总人数乘以样本中“读书量”不少于4本的学生人数所占百分比即可.【详解】解:(1)抽样调查的学生总数为:=50(人),“读书量”4本的人数所占的百分比是1-10%-10%-20%-40%=20%,“读书量”4本的人数有:50×20%=10(人),
    补全图1的统计图如下,
     (2)根据统计图可知众数为3,把这些数从小到大排列,中位数是第25、26个数的平均数,则中位数是=3(本);故答案为:3,3;(3)根据题意得,1000×(10%+20%)=300(人),答:估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共20页。试卷主要包含了一组数据,某排球队6名场上队员的身高等内容,欢迎下载使用。

    初中数学第十七章 方差与频数分布综合与测试课后测评:

    这是一份初中数学第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了数学老师将本班学生的身高数据,篮球队5名场上队员的身高等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map