搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新京改版八年级数学下册第十七章方差与频数分布课时练习试题(含答案解析)

    2022年最新京改版八年级数学下册第十七章方差与频数分布课时练习试题(含答案解析)第1页
    2022年最新京改版八年级数学下册第十七章方差与频数分布课时练习试题(含答案解析)第2页
    2022年最新京改版八年级数学下册第十七章方差与频数分布课时练习试题(含答案解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十七章 方差与频数分布综合与测试课后练习题

    展开

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试课后练习题,共20页。试卷主要包含了一组数据,数学老师将本班学生的身高数据等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2 平均数(单位:秒)52m5250方差s2(单位:秒24.5n12.517.5根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则mn的值可以是(  )A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=182、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是(    A. B. C. D.3、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为(    A.3和2 B.4和3 C.5和2 D.6 和24、一组数据:1,3,3,4,5,它们的极差是(    A.2 B.3 C.4 D.55、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是(   A.平均数是80 B.众数是60 C.中位数是100 D.方差是206、某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是(    A.平均分不变,方差变小 B.平均分不变,方差变大C.平均分和方差都不变 D.平均分和方差都改变7、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是(    A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%8、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S2=6,S224,S2=25.5,S2=36,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁9、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期个数11121013131312对于小强做引体向上的个数,下列说法错误的是(    A.平均数是12 B.众数是13C.中位数是12.5 D.方差是10、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是(    A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据的平均数是4,则这组数据的方差是_________.2、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.3、据统计,某车间10名员工每人日平均生产零件个数为6,方差为2.5,引入新技术后,每名员工每日都比原先多生产1个零件,则现在日平均生产零件个数为 ___,方差为 ___.4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.5、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为,则身高较整齐的球队是________队(填“甲”或“乙”).三、解答题(5小题,每小题10分,共计50分)1、经济快速发展使得网店的规模越来越大,现甲、乙两家电商公司拟各招聘一名网络客服,日工资方案如下:甲公司规定底薪100元,每销售一件产品提成1元;乙公司规定底薪140元,日销售量不超过44件没有提成,超过44件且不超过48件时,超过的部分每件提成8元,超过48件的部分每件提成10元.现随机抽取了甲、乙两家销售公司100天的销售单,对两个公司的推销员平均每天销售单数进行统计,数据如图.(1)如果甲公司一名网络客服的日销售件数为46件,则甲公司这名网络客服当日的工资为多少元?(2)设乙公司一名网络客服的日工资为y(单位:元),日销售件数为x件,写出乙公司一名网络客服的日工资y(单位:元)与销售件数x的关系式;(3)小华利用假期到两家公司中的一家应聘网络客服,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.2、近日,教育部印发通知,决定实施青少年急救教育行动计划,开展全国学校急救教育试点工作.某校为普及急救知识,进行了相关知识竞赛,现从七、八年级中各随机抽取20名学生的竞赛成绩进行整理、描述和分析(成绩得分用x表示,共分为四个等级:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100),下面给出了部分信息.七年级20名学生的竞赛成绩是:62,68,75,80,82,85,86,88,89,90,90,95,96,98,99,99,99,99,100,100.八年级20名学生的竞赛成绩中C等级包含的所有数据为:82,84,85,86,88,89.七、八年级抽取的学生竞赛成绩统计表 年级七年级八年级平均数8989中位数90b众数c100根据以上信息,解答下列问题:(1)填空:上述图表中a     b     c     (2)根据图表中的数据,判断七、八年级中哪个年级学生竞赛成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级共2000名学生参加了此次竞赛活动,估计竞赛成绩为D等级的学生人数是多少?3、甲、乙两人在5次打靶测试中命中的环数如下: 平均数众数中位数方差8 80.4 9 3.2甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?4、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即ABCDE五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.5、为配合“禁烟”行动,某校组织同学们在我市某社区开展了“你最支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个不完整的统计图:
     (1)根据以上信息,把条形统计图补充完整(并标注人数);(2)在统计图中,表示“强制戒烟”方式的扇形的圆心角为多少度?(3)假定该社区有1万人,请估计该社区大约有多少人支持采取“警示戒烟”这种戒烟方式? -参考答案-一、单选题1、A【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.2、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.3、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得解得x=6,∴这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.4、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.5、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为方差为观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.6、A【分析】根据平均数,方差的定义计算即可.【详解】解:∵小颖的成绩和其他49人的平均数相同,都是92分,∴该班50人的测试成绩的平均分为92分,方差变小,故选:A.【点睛】本题考查了方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8、A【分析】根据方差的意义求解即可.【详解】解:∵S2=6,S2=24,S2=25.5,S2=36,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.9、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.10、D【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为则频率为故选D.【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.二、填空题1、【分析】先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x的平均数是4,
    可得:
    解得:x=3,
    方差为:=故答案为:【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.2、最大值与最小值    组距    组数    频数分布表    频数分布直方图    【分析】根据频数分布直方图的步骤即可得出【详解】分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,3、7    2.5    【分析】新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在原数据平均数基础上加1,数据的波动幅度不变.【详解】解:根据题意,新数据是在原数据的基础上分别加上1所得,所以现在日平均生产零件个数为6+1=7,方差为2.5,故答案为:7;2.5.【点睛】本题主要考查方差和平均数,解题的关键是根据题意得出新数据是在原数据的基础上分别加上1所得,据此新数据的平均数在原数据平均数基础上加1,数据的波动幅度不变.4、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,
    这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,
    故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.5、甲【分析】根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵S2S2∴身高较整齐的球队是甲队.故答案为:甲.【点睛】本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题1、(1)146元;(2)y;(3)乙公司,理由见解析【分析】(1)根据甲公司的日工资方案进行计算即可;
    (2)根据乙公司的日工资方案进行解答即可得出结果;
    (3)分别表示出甲、乙两间公司的平均日工资,再进行解答即可.【详解】解:(1)甲公司这名网络客服当日的工资为:100+46×1=146(元),∴甲公司这名网络客服当日的工资为146元;(2)当x≤44时,y=140;当44<x≤48时,y=140+8(x﹣44)=8c﹣212;x>48时,y=140+8×(48﹣44)+10(x﹣48)=10x﹣308,∴乙公司一名网络客服的日工资y与销售件数x的关系式为:y (3)甲公司一名网络客服的平均日工资为:145(元);乙公司一名网络客服的平均日工资为:=162.8(元),∵145<162.8,∴如果从日均收入的角度考虑,建议他去乙公司.【点睛】本题主要考查一次函数的应用,解答的关键是分析清楚题意,明确其中的等量关系.2、(1)40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)900人【分析】(1)根据八年级C等级有6个学生可得a,根据扇形统计图可得八年级中位数b,根据七年级的成绩可得众数c(2)比较平均数、中位数和众数可得结论;(3)求出七、八年级学生竞赛成绩为D等级的百分比可得答案.【详解】解:(1)八年级20名学生的竞赛成绩中C等级包含6个分数,C等级所占百分比为=30%,a%=1﹣20%﹣10%﹣30%=40%,a=40,八年级成绩A等级的有20×20%=4(人),B等级的有20×10%=2(人),∴八年级中位数位于C等级的第4、5两个数据即86,88,八年级中位数位于C等级,b=87,七年级成绩是众数是99分,c=99,故答案为:40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)七年级D等级人数是10人,八年级D等级人数是20×40%=8人,2000×=900(人),答:竞赛成绩为D等级的学生人数是900人.【点睛】本题考查了扇形统计图、中位数、众数、平均数,理解中位数、众数、平均数的计算方法是正确求解的前提.3、(1)见解析;(2)见解析【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下: 平均数众数中位数方差8880.48993.2故答案为:8,8,9; (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.4、(1)40;(2)补图见解析;(3)117°;(4)40人.【分析】(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:(人),故答案为:40;(2)C等级的人数有:(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:故答案为:117°;(4)估计该校A等级的学生人数有:(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.5、(1)见解析;(2)144°;(3)3500人【分析】(1)在条形统计图中找出“代替品戒烟”人数为30人,在扇形统计图中所占的百分比为,求出随机调查的总人数,由总人数及“药物戒烟”所占的百分比,“警戒戒烟”所占的百分比,求出各自的人数,补全条形统计图即可;(2)“强制戒烟”的人数为120人,总人数为300人,求出所占的百分比,再乘以即可;(3)先求出样本中支持“警戒戒烟”这种方式所占的百分比,再利用样本估计总体即可得出答案.【详解】(1)如图所示:(2)调查的人数=30÷10%=300(人),“强制戒烟”方式的扇形的圆心角=(120÷300)×100%×360°=144°;(3)支持“警示戒烟”方式的人数=(1-10%-15%-40%)×10000=3500(人),答:该社区大约有3500人支持采取“警示戒烟”这种戒烟方式.【点睛】本题考查条形统计图、扇形统计图以及用样本估计总体,根据统计图,找出有用信息是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。

    数学八年级下册第十七章 方差与频数分布综合与测试练习:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习,共21页。试卷主要包含了一组数据等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共23页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map