数学八年级下册第十七章 方差与频数分布综合与测试随堂练习题
展开
这是一份数学八年级下册第十七章 方差与频数分布综合与测试随堂练习题,共20页。试卷主要包含了某校八年级人数相等的甲,下列说法正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是62、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).A.4 B.5 C.6 D.73、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分4、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )A. B. C. D.5、在对一组样本数据进行分析时,小华列出了方差的计算公式S2=,下列说法错误的是( )A.样本容量是5 B.样本的中位数是4C.样本的平均数是3.8 D.样本的众数是46、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )A.甲 B.乙 C.丙 D.无法确定7、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )A.众数是11 B.平均数是12 C.方差是 D.中位数是138、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.89、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定10、已知一组数据的方差s2=[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为( )A.5 B.7 C.10 D.11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.2、一组数据5, 4, 2, 4, 5的方差是________.3、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.4、甲、乙两名同学进行跳高测试,每人跳10次,他们的平均成绩都是1.55米,方差分别是,,则在本次测试中__________同学的成绩更稳定.(填“甲”或“乙”)5、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______. 甲乙平均数368320方差2.55.6 三、解答题(5小题,每小题10分,共计50分)1、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?2、经济快速发展使得网店的规模越来越大,现甲、乙两家电商公司拟各招聘一名网络客服,日工资方案如下:甲公司规定底薪100元,每销售一件产品提成1元;乙公司规定底薪140元,日销售量不超过44件没有提成,超过44件且不超过48件时,超过的部分每件提成8元,超过48件的部分每件提成10元.现随机抽取了甲、乙两家销售公司100天的销售单,对两个公司的推销员平均每天销售单数进行统计,数据如图.(1)如果甲公司一名网络客服的日销售件数为46件,则甲公司这名网络客服当日的工资为多少元?(2)设乙公司一名网络客服的日工资为y(单位:元),日销售件数为x件,写出乙公司一名网络客服的日工资y(单位:元)与销售件数x的关系式;(3)小华利用假期到两家公司中的一家应聘网络客服,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.3、戴头盔对保护骑电动车人的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为 .(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?4、为了解中考体育科目训练情况,某区从全区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图、图2所示的两幅不完整的统计图,请根据统计中的信息解答下列问题:(1)求本次抽样测试的学生人数是多少;(2)通过计算把条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次中考体育科目考试,请估计不及格的人数有多少人.5、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75≤x<80180≤x<85385≤x<90790≤x<95m95≤x<100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是 ,表中m= ; n= ;(2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成 统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人? -参考答案-一、单选题1、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.2、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.3、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.4、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.5、D【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为,则样本的容量是5,选项A正确;样本的中位数是4,选项B正确;样本的平均数是,选项C正确;样本的众数是3和4,选项D错误;故选:D.【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.6、C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,,,∴,∴成绩波动最小的班级是:丙班.故选:C.【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.7、D【分析】根据中位数、平均数、众数和方差的定义计算即可得出答案.【详解】解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意; C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D.【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.8、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.9、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.10、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,
则×(6+10+a+b+8)=7,
∴a+b=11,
故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.二、填空题1、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】∵=84, =83.2,=13.2, =26.36,∴ ,,
∴甲的平均成绩高,且甲的成绩较为稳定;
故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、1.2【分析】首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:平均数,
数据的方差 ,
故答案为 :1.2.【点睛】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法.3、最大值与最小值 组距 组数 频数分布表 频数分布直方图 【分析】根据频数分布直方图的步骤即可得出【详解】分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,4、乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:,,,甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义,解题的关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题1、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,本次调查人数为:(人); (2)∵艺术:(人),∴补全的条形统计图如下图所示:
“其他”所对应的圆心角度数为; (3)样本中选择阅读的人数为18人,占样本的百分比为,该校学生总人数为840人,估计选择阅读的学生有:(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.2、(1)146元;(2)y;(3)乙公司,理由见解析【分析】(1)根据甲公司的日工资方案进行计算即可;
(2)根据乙公司的日工资方案进行解答即可得出结果;
(3)分别表示出甲、乙两间公司的平均日工资,再进行解答即可.【详解】解:(1)甲公司这名网络客服当日的工资为:100+46×1=146(元),∴甲公司这名网络客服当日的工资为146元;(2)当x≤44时,y=140;当44<x≤48时,y=140+8(x﹣44)=8c﹣212;当x>48时,y=140+8×(48﹣44)+10(x﹣48)=10x﹣308,∴乙公司一名网络客服的日工资y与销售件数x的关系式为:y ;(3)甲公司一名网络客服的平均日工资为:145(元);乙公司一名网络客服的平均日工资为:=162.8(元),∵145<162.8,∴如果从日均收入的角度考虑,建议他去乙公司.【点睛】本题主要考查一次函数的应用,解答的关键是分析清楚题意,明确其中的等量关系.3、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【分析】(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;(2)用(1)中求出的样本总人数减去“很少戴头盔”、 “常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.【详解】(1)由扇形统计图和条形统计图可得,“常常戴头盔”的人数为64人,所占的百分比为,∴调查的样本总人数=,∴样本容量为200,故答案为:200;(2)“有时戴头盔”的人数=(人),补全条形统计图如下:“总是戴头盔”的人数所占圆心角=;(3)(万人),∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【点睛】此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.4、(1)抽样测试的学生人数为40人;(2)条形统计图见详解;(3)估计不及格人数有700人【分析】(1)用B级人数除以B级人数占的百分比即可;(2)用(1)中求得的数据乘以即可求出C级人数,然后补全统计图即可;(3)用总人数乘以D级人数的比例即可.【详解】解:(1)(人),∴本次抽样测试的学生人数是40人;(2)(人),∴抽样测试中为C级的人数是14人,补全条形统计图,如图所示;(3)(人),∴估计不及格的人数有700人.【点睛】题目主要考查扇形统计图和条形统计图的综合,求样本总量,画条形统计图,用样本估计总体等,理解题意,数量掌握计算方法是解题关键.5、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.(2)折线统计图可以反映数据变化.(3)等级的频率为,进而估计名同学成绩为等级的学生人数.(1)解:由题意可知样本容量为25, m=6, n=8故答案为:25,6,8.(2)解:折线统计图可以反映数据变化故答案为:折线.(3)解:∵等级的频率为∴∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.【点睛】本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.
相关试卷
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后复习题,共19页。试卷主要包含了某排球队6名场上队员的身高,为考察甲,下列说法中正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题,共21页。试卷主要包含了一组数据a-1,已知一组数据的方差s2=[等内容,欢迎下载使用。