终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十七章方差与频数分布同步练习试题(含答案及详细解析)

    立即下载
    加入资料篮
    2022年必考点解析京改版八年级数学下册第十七章方差与频数分布同步练习试题(含答案及详细解析)第1页
    2022年必考点解析京改版八年级数学下册第十七章方差与频数分布同步练习试题(含答案及详细解析)第2页
    2022年必考点解析京改版八年级数学下册第十七章方差与频数分布同步练习试题(含答案及详细解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测,共21页。
    京改版八年级数学下册第十七章方差与频数分布同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据的方差s2[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](ab为常数),则a+b的值为(  )A.5 B.7 C.10 D.112、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是(    A.众数是 B.中位数是 C.平均数是 D.方差是3、某校随机抽查了10名学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12322下列说法正确的是(    A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分4、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S2=5,S2=20,S2=23,S2=32,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁5、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是(    A.平均数为30,方差为8 B.平均数为32,方差为8C.平均数为32,方差为20 D.平均数为32,方差为186、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S2=6,S2=24,S2=25.5,S2=36,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁7、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为(    A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频率是60% D.出现正面的频数是40%8、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是(   A.平均数是80 B.众数是60 C.中位数是100 D.方差是209、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组10、已知数据的平均数,方差,则数据的平均数和方差分别为(   A.5,12 B.5,6 C.10,12 D.10,6第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,则在本次训练中,运动员__________的成绩更稳定.2、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为则小麦长势比较整齐的试验田是__________.3、已知一组数据它们的平均数是,则______,这一组数据的方差为______.4、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.5、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S2=38,S2=10,则______ 同学的数学成绩更稳定.三、解答题(5小题,每小题10分,共计50分)1、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有    人,扇形统计图中∠α的度数是    (2)请把条形统计图补充完整.2、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:(收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80(整理、描述数据)按如表分数段整理、描述这两组样本数据:分数(分)40≤x<6060≤x<8080≤x<100甲学校2人12人6人乙学校3人10人7人(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60)(分析数据)两组样本数据的平均分、中位数、众数如表所示:学校平均分中位数众数甲学校686060乙学校71.570a(得出结论)(1)(分析数据)中,乙学校的众数a   (2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是    校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)3、今年5月22日,我国“杂交水稻之父”、中国工程院院士、“共和国勋章”获得者、让国人吃饱饭的伟大科学家袁隆平先生不幸逝世.“一粥一饭,当思来之不易”,倡导“光盘行动”,让同学们珍惜粮食,某校政教处在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.  (1)这次被调查的同学共有______名;(2)将条形统计图补充完整;(3)学校政教处通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人食用一餐,据此估算,该校3800名学生一餐浪费的食物可供多少人食用一餐?4、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80≤x<85a20%85≤x<9080b90≤x<956030%95≤x<10020 根据以上图表提供的信息,解答下列问题:(1)写出表中ab的数值:a      b      (2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.5、为进一步推广大课间活动,某中学对已开设的A篮球、B立定跳远、C跑步、D跳绳,四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)学校共抽取了多少学生进行调查;(2)通过计算把条形统计图补充完整;(3)若该校共用800名学生,请你估计喜欢立定跳远和跳绳活动项目的学生共有多少人. -参考答案-一、单选题1、D【分析】根据方差的定义得出这组数据为6,10,ab,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,ab,8,其平均数为7,
    ×(6+10+ab+8)=7,
    ab=11,
    故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.2、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为,故C选项正确,不符合题意;这组数据的方差为:,故D选项不正确,符合题意.故选D.【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:3、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.4、A【分析】根据方差的意义求解即可.【详解】解:∵S2=5,S2=20,S2=23,S2=32,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.5、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.6、A【分析】根据方差的意义求解即可.【详解】解:∵S2=6,S2=24,S2=25.5,S2=36,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.7、C【分析】根据频率的计算方法判断各个选项.【详解】解:A、应为:出现正面的频数是4,错误,不符合题意;B、应为:出现反面的频数是6,错误,不符合题意;C、正确,符合题意;D、出现正面的频率是40%,错误,不符合题意.故选:C.【点睛】本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.8、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为方差为观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.9、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.10、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据的平均数即:∴数据的平均数为又∵数据的方差即:∴数据的方差为故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.二、填空题1、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】解:∵∵3.8<4,∴S2<S2∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.3、        【分析】先根据平均数的定义确定出的值,再根据方差的计算公式计算即可.【详解】解:数据 的平均数是这组数据的方差是:故答案为:2,【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4、0.75【分析】根据频率=频数÷总数进行求解即可.【详解】解:∵小亮在10分钟之内罚球20次,共罚进15次,∴小亮点球罚进的频率是故答案为:0.75.【点睛】本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.5、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:∵甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S2=38,S2=10,S2S2
    ∴乙同学的数学成绩更稳定,
    故答案为:乙.【点睛】本题考查了方差,解题的关键是明确方差越小越稳定.三、解答题1、(1);(2)画图见解析【分析】(1)由B组8人,占比20%,列式可得总人数,由C组的占比乘以可得圆心角的度数;(2)先计算出C组的人数,再补全图形即可.【详解】解:(1)由B组8人,占比20%,可得总人数为:人,所以C组所在扇形的圆心角为: 故答案为: (2)C组的人数为:人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.2、(1)70;(2)甲;(3)140人;(4)乙学校成绩较好,理由见详解【分析】(1)由众数的定义解答即可;(2)可从中位数的角度分析即可;(3)用总人数乘以乙校学生在这次竞赛中的成绩是优秀的人数占被调查人数的比例即可;(4)根据平均分和中位数乙校高于甲校即可判断.【详解】解:(1)乙校的20名同学的成绩中70分出现的次数最多,∴乙学校的众数a=70,故答案为:70(2)甲校的中位数为60,小明的同学的成绩高于此学校的中位数,∴小明是甲校的学生;故答案为:甲.(3)400×=140(人)∴估计乙校学生在这次竞赛中的成绩是优秀的人数有140人.(4)∵乙校的平均分高于甲校的平均分,且乙校的中位数70高于甲校的中位数,说明乙校分数不低于70分的人数比甲多,∴乙校的成绩较好.【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.3、(1)1000;(2)补图见解析;(3)大约可供760人食用一餐.【分析】(1)用“没有剩”的人数除以其所占百分比即可得到总人数;(2)先求出“剩少量”的人数,然后补全统计图即可;(3)先求出样本中,浪费的粮食可供人食用的人数占比,然后估计总体即可.【详解】解:(1)由题意得这次被调查的同学共有名;(2)由(1)可知,“剩少量”的人数=1000-400-250-150=200人,∴补充完整的条形统计图如图所示;(3)∵1000人浪费的粮食可供200人食用一餐.∴这餐饭3800名学生浪费的粮食大约可供760人食用一餐.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,画条形统计图等等,准确读懂统计图是解题的关键.4、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:(人),故答案为:40;40%;(2)成绩在的学生人数所占百分比为:故频数分布表为:分数段频数百分比80≤x<854020%85≤x<908040%90≤x<956030%95≤x<1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.5、(1)学校共抽取了150名学生进行调查;(2)见解析;(3)400人【分析】(1)根据题意由A项目人数及其所占百分比可得被调查总人数;
    (2)由题意根据四个项目人数之和等于总人数求出C项目人数,从而补全图形;
    (3)根据题意用总人数乘以样本中喜欢立定跳远和跳绳活动项目的学生所占比例即可.【详解】解:(1)根据题意得:15÷10%=150(名).答:学校共抽取了150名学生进行调查. (2)本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),画图如下:(3)800×(20%+30%)=400(人)答:估计全校喜欢立定跳远和跳绳活动项目的学生共有400人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 

    相关试卷

    北京课改版八年级下册第十七章 方差与频数分布综合与测试练习:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。试卷主要包含了一组数据1等内容,欢迎下载使用。

    数学八年级下册第十七章 方差与频数分布综合与测试同步训练题:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试同步训练题,共20页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共24页。试卷主要包含了2020年某果园随机从甲,下列说法正确的是,数学老师将本班学生的身高数据等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map