数学第十七章 方差与频数分布综合与测试同步练习题
展开
这是一份数学第十七章 方差与频数分布综合与测试同步练习题,共20页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,,,,这四个旅游团中年龄相近的旅游团是( )A.甲团 B.乙团 C.丙团 D.丁团2、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是( )A.20m3 B.52m3 C.60m3 D.100m33、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )A.平均数 B.中位数 C.众数 D.方差4、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A.平均数是80 B.众数是60 C.中位数是100 D.方差是205、已知数据,,的平均数,方差,则数据,,的平均数和方差分别为( )A.5,12 B.5,6 C.10,12 D.10,66、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.27、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )A.0和2 B.0和 C.0和1 D.0和08、甲,乙,丙,丁四个小组的同学分别参加了班级组织的中华古诗词知识竞赛,四个小组的平均分相同,其方差如下表.若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选( )组名甲乙丙丁方差4.33.243.6A.甲 B.乙 C.丙 D.丁9、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.810、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )甲26778乙23488A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.2、已知:①1,2,3,4,5的平均数是3,方差是2;②2,3,4,5,6的平均数是4,方差是2;③1,3,5,7,9的平均数是5,方差是8;④2,4,6,8,10的平均数是6,方差是8;请按要求填空:(1),,,,的平均数是 ,方差是 ;(2),,,,的平均数是 ,方差是 ;(3),,,,的平均数是 ,方差是 .3、数据6,3,9,7,1的极差是_________.4、已知一组数据x1,x2,x3,方差是2,那么另一组数据2x1﹣4,2x2﹣4,2x3﹣4的方差是 ______________.5、如果一组数据,,…,的方差是2,那么一组新数据,,…,的方差是__________.三、解答题(5小题,每小题10分,共计50分)1、戴头盔对保护骑电动车人的安全尤为重要,志愿者在某市随机抽取部分骑电动车的人就戴头盔情况进行调查(调查内容为:“很少戴头盔”、“有时戴头盔”、“常常戴头盔”、“总是戴头盔”),对调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为 .(2)请你补全条形统计图;并求出总是戴头盔的所占圆心角的大小;(3)若该市有120万人骑电动车,请你估计其中“很少”戴头盔的有多少人?2、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?3、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.载客量/人组中值频数(班次)1≤x<2111221≤x<41a841≤x<61b20(1)求出表格中a=_______,b=______.(2)计算该2路公共汽车平均每班的载客量是多少?4、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
5、新冠疫情期间,某校开展线上教学.为了解该校九年级10个班500名学生线上数学学习情况,返校后进行了数学考试.在10个班中随机抽样了部分同学的考试成绩(得分均为整数,最低分60分)进行整理,并分别绘制成扇形统计图和频数分布直方图.部分信息如下:(1)样本中的学生共有 人,图1中59.5﹣69.5的扇形圆心角是 ;(2)补全图2频数分布直方图;(3)考前年级规定,成绩由高到低前40%的同学可以奖励,小玲的成绩为88分,请判断她能否得到奖励.并说明理由. -参考答案-一、单选题1、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】,由此可估计全班同学的家庭一个月节约用水的总量是.故选:B.【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.3、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.4、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为、方差为.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.5、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据,,的平均数即:∴数据,,的平均数为又∵数据,,的方差即:∴数据,,的方差为故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.6、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均数为,方差为,故选:B.【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.7、A【分析】根据平均数公式与方差公式计算即可.【详解】解:,.故选择A.【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键.8、B【分析】根据方差的意义求解即可.【详解】解:由表格知,乙的方差最小,所以若要从中选出一个成绩更稳定的小组参加年级的比赛,那么应选乙,故选:B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.9、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.10、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D.【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.二、填空题1、18【分析】根据频数总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.2、(1),2 ;(2),8;(3),【分析】(1)数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,只需将数据的平均数加上(n−1)即可,而数据波动幅度不变;(2)数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,只需将原数据的平均数加上(n−2)即可,而数据波动幅度不变;;(3)由数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,将原数据的平均数乘以n,方差乘以n2即可得出答案.【详解】解:(1)∵数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,∴数据n,n+1,n+2,n+3,n+4的平均数3+n−1=n+2,方差依然是2,故答案为:n+2,2;(2)∵数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,∴n,n+2,n+4,n+6,n+8的平均数是6+n−2=n+4,方差依然是8,故答案为:n+4,8;(3)数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,∴数据n,2n,3n,4n,5n的平均数为3n,方差为2n2,故答案为:3n,2n2.【点睛】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的性质.3、8【分析】根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.【详解】解:数据6,3,9,7,1的极差是故答案为:【点睛】本题考查了极差定义,理解极差的定义是解题的关键.4、8【分析】设这组数据,,的平均数为,则另一组数据,,的平均数为,因为数据,,的方差为,所以数据,,的方差为,进行计算即可得.【详解】解:设这组数据,,的平均数为,则另一组数据,,的平均数为,∵数据,,的方差为:,∴数据,,的方差为:= = = =8故答案为:8.【点睛】本题考查了方差,解题的关键是掌握方差的公式.5、【分析】设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,代入方差公式,计算即可.【详解】解:设一组数据,,…,的平均数为,方差是,则另一组数据,,…,的平均数为,方差是,∵,∴,则,∴,∴,.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据,,…,的方差是,那么另一组数据,,,的方差是.三、解答题1、(1)200;(2)补全条形统计图见解析;“总是戴头盔”的所占圆心角为;(3)该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【分析】(1)根据“常常戴头盔”的人数和所占的百分比求出调查的总人数,即可得到样本容量;(2)用(1)中求出的样本总人数减去“很少戴头盔”、 “常常戴头盔”、“总是戴头盔”的人数即可求出“有时戴头盔”的人数;根据“总是戴头盔”的人数和样本总人数求出所占的百分比,然后即可求出所占圆心角的大小;(3)首先求出“很少戴头盔”的人数在样本中所占的百分比,用样本估计总体即可估计出该市“很少戴头盔”的人数.【详解】(1)由扇形统计图和条形统计图可得,“常常戴头盔”的人数为64人,所占的百分比为,∴调查的样本总人数=,∴样本容量为200,故答案为:200;(2)“有时戴头盔”的人数=(人),补全条形统计图如下:“总是戴头盔”的人数所占圆心角=;(3)(万人),∴该市120万骑电动车的人中,“很少戴头盔”的人数大约14.4(万人).【点睛】此题考查了条形统计图和扇形统计图的相关知识,用样本估计总体,解题的关键是正确分析出条形统计图和扇形统计图中数据之间的关系.2、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.
(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.
(3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),
若该校共有1500名学生,估计全校爱好运动的学生有1500×=600(名).
故答案为100,600.
(2)阅读人数人圆心角=条形图如图所示:
故答案为108.
(3)150÷30%=500(名),
答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、(1)31;51;(2)43人.【分析】(1)利用组中值的计算方程直接计算即可得;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解即可.【详解】解:(1),,故答案为:31;51;(2)(人),答:该2路公共汽车平均每班的载客量是43人.【点睛】题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键.4、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:
(3)估计科普类书籍的本数为1200×=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.5、(1)50,36°;(2)见解析;(3)能得奖,见解析【分析】(1)用“79.5~89.5”的人数除以它们所占的百分比可得到调查的总人数;用360°乘以59.5~69.5”这一范围的人数占总人数的百分比,即可得出答案;(2)求出“69.5~74.5”这一范围的人数即可补全图2频数分布直方图;(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论.【详解】(1)样本中的学生共有(10+8)÷36%=50(人),59.5﹣69.5的扇形圆心角度数为360°×=36°,故答案为:50、36°;(2)69.5﹣74.5对应的人数为50﹣(4+8+8+10+8+3+2)=7,补全频数分布直方图如下:(3)能得到奖励.理由如下:∵本次比赛参赛选手50人,∴成绩由高到低前40%的人数为50×40%=20,又∵88>84.5,∴能得到奖励.【点睛】本题考查了扇形统计图、频数直方图等知识,读懂统计图中的信息是关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课时作业,共22页。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试精练,共23页。试卷主要包含了在一次射击训练中,甲,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了一组数据1,在一次投篮训练中,甲等内容,欢迎下载使用。