年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习试题(名师精选)

    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习试题(名师精选)第1页
    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习试题(名师精选)第2页
    2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专题练习试题(名师精选)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试达标测试,共20页。
    京改版八年级数学下册第十七章方差与频数分布专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是(  )A.0.6 B.6 C.0.4 D.42、在频数分布表中,所有频数之和(    A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数3、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是(    A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%4、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2 [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是(  )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分5、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S2=6,S2=24,S2=25.5,S2=36,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁6、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是(    A. B. C. D.7、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S2=5,S2=20,S2=23,S2=32,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁8、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是(     平均成绩(分)95989698方差3322A. B. C. D.9、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为(    ).A.9 B.8 C.7 D.610、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是(  )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某校八年级(1)班甲、乙两名同学在10次射箭成绩情况如下表所示,体育老师根据这10次成绩,会选择______同学参加比赛.(填“甲”或“乙”) 平均数(环)众数(环)中位数(环)方差(环)8.7991.58.71093.2 2、数据1,3,2,5和x的平均数是3,则这组数据的方差是____________.3、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.4、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s2=0.01,s2=0.009,s2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.5、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.三、解答题(5小题,每小题10分,共计50分)1、贵州省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?2、九(1)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):89710109101010787981010910910(1)甲队成绩的中位数是     分,乙队成绩的众数是     分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是     队.3、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整:(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是             (4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?4、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂平均数211196中位数a215众数b230极差188c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a     b     c     ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?5、在推进城乡生活垃圾分类的行动中,社区从两个小区各随机选择50位居民进行问卷调查,并得到他们的成绩,将成绩定为“不了解”,为“比较了解”,为“非常了解”,并绘制了如图的统计图:(每一组不包含前一个边界值,包含后一个边界值)已知小区共有常住居民500人,小区共有常住居民400人,(1)请估计整个小区达到“非常了解”的居民人数.(2)将“比较了解”和“非常了解”的人数作为普及到位的居民,请估计整个小区普及到位的居民人数.(3)你认为哪个小区垃圾分类的普及工作更出色?请通过计算并用合适的数据来说明. -参考答案-一、单选题1、C【分析】先求出反面朝上的频数,然后根据频率=频数÷总数求解即可【详解】解:∵小明抛一枚硬币100次,其中有60次正面朝上,∴小明抛一枚硬币100次,其中有40次反面朝上,∴反面朝上的频率=40÷100=0.4,故选C.【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.2、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确    B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关    ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.3、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2 [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.5、A【分析】根据方差的意义求解即可.【详解】解:∵S2=6,S2=24,S2=25.5,S2=36,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.6、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.7、A【分析】根据方差的意义求解即可.【详解】解:∵S2=5,S2=20,S2=23,S2=32,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.8、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键9、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.10、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.二、填空题1、甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙两名同学平均数相同且S2S2∴甲的成绩较稳定,∴从稳定性角度考虑,会选择甲同学参加比赛.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、2【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1x2,…xn的平均数为  x1+x2+…+xn),则方差【详解】解:x=5×3-1-3-2-5=4,s2= [(1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2]=2.故答案为:2.【点睛】本题考查了方差的定义:一般地设n个数据,x1x2,…xn的平均数为  x1+x2+…+xn),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、一般水平    波动大小    【分析】根据平均数和方差的意义进行回答即可.【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键.4、乙【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s2=0.01,s2=0.009,s2=0.0093,s2s2s2∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、样本平均数    组中值    组中值    频数    【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.三、解答题1、 (1) 120(名);(2) 补全统计图见详解(3)855(名).【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出AB的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.【详解】解:(1)抽样调查的学生人数为6÷5%=120(名);(2)A的百分比:×100%=30%,B的百分比:×100%=45%,C组的人数:120×20%=24名;  补全统计图,如图所示:
    (3)对“节约教育”内容“了解较多”的有1900×45%=855(名).【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量.2、(1)9.5,10;(2)平均成绩为9分,方差为1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是: [4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).【分析】(1)利用成绩为良的人数以及百分比求出总人数即可.
    (2)求出成绩为中的人数,画出条形图即可.
    (3)根据圆心角=360°×百分比即可.
    (4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.【详解】解:(1)总人数=22÷44%=50(人).
    (2)中的人数=50−10−22−8=10(人),
    条形图如图所示:

    (3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,故答案为72°.
    (4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).【点睛】本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.4、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,a=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.5、(1)96人;(2)250人;(3)B小区垃圾分类的普及工作更出色,见解析【分析】(1)用整个B小区总人数乘以样本中“非常了解”的人数的百分比,即可估计整个B小区达到“非常了解”的居民人数;(2)用整个A小区总人数乘以样本中“比较了解”和“非常了解”的人数的频率,即可估计整个A小区普及到位的居民人数;(3)计算出两个小区样本“不了解”的人数的百分比,用样本估计总体.【详解】解:(1)估计整个小区达到“非常了解”的居民人数有:(人); (2)整个小区普及到位的居民人数有:(人);(3)整个小区“不了解”的:整个小区“不了解”的44%.因为44%<50%所以小区垃圾分类的普及工作更出色.【点睛】本题考查了用样本估计总体,调查收集数据的过程与方法,解决本题的关键是掌握用样本估计总体. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试一课一练,共20页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。试卷主要包含了已知一组数据的方差s2=[,为考察甲等内容,欢迎下载使用。

    2021学年第十七章 方差与频数分布综合与测试练习题:

    这是一份2021学年第十七章 方差与频数分布综合与测试练习题,共22页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map