北京课改版七年级下册第六章 整式的运算综合与测试测试题
展开
这是一份北京课改版七年级下册第六章 整式的运算综合与测试测试题,共16页。试卷主要包含了观察下列各式,下列运算正确的是,多项式+1的次数是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x22、 “数形结合”是一种重要的数学思维,观察下面的图形和算式: 解答下列问题:请用上面得到的规律计算:21+23+25+27…+101=( )A. B. C. D.3、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.多项式x2+y2﹣1的常数项是1D.多项式x2+2x+18是二次三项式4、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201125、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )A.﹣2 B.0 C.2 D.36、下列运算正确的是( )A. B. C. D.7、多项式+1的次数是( )A.1 B.2 C.3 D.48、下列运算正确的是( )A. B. C. D.9、下列运算正确的是( )A. B.C. D.10、对代数式-(a-b)进行去括号运算,结果正确的是( )A.a-b B.-a-b C.a+b D.–a+b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律,第10个图中共有点的个数是______个.2、单项式-的系数是__________.3、多项式的次数是____次,它的常数项是____.4、若x2+2(m﹣3)x+16是完全平方式,则m的值等于______.5、如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是 _____.﹣1abc3b ﹣5 … 三、解答题(5小题,每小题10分,共计50分)1、计算(1)(2)2、在数学习题课中,同学们为了求的值,进行了如下探索:(1)某同学设计如图1所示的几何图形,将一个面积为1的长方形纸片对折.(I)求图1中部分④的面积;(II)请你利用图形求的值;(III)受此启发,请求出的值;(2)请你利用备用图,再设计一个能求与的值的几何图形.3、化简:a(a﹣2b)+(a+b)2.4、化简求值:(1)化简:2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2;(2)求值:当(x+2)2+|y+1|=0时,求(1)中式子的值.5、先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y. ---------参考答案-----------一、单选题1、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.2、B【分析】由题意根据图形和算式的变化发现规律,进而根据得到的规律进行计算即可.【详解】解:观察以下算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
发现规律:
1+3+5+7+9+…+19=100=102.
∴1+3+5+7+9+…+19+21+23+25+27+…+101=512
∴21+23+25+27+…+101=512-102=2501.
故选:B.【点睛】本题考查规律型-图形的变化类、有理数的混合运算,解决本题的关键是根据图形和算式的变化寻找规律,并运用规律.3、D【详解】根据单项式和多项式的相关定义解答即可得出答案.【分析】解:A、单项式的系数是,次数是3,原说法错误,故此选项不符合题意;B、单项式m的次数是1,系数也是1,原说法错误,故此选项不符合题意;C、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意;D、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意.故选D.【点睛】本题主要考查了单项式的定义,单项式的次数、系数的定义,多项式的定义及其次数的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.4、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.5、C【分析】先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.【详解】解:由题意得:,即,则,,,,,故选:C.【点睛】本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.6、B【分析】由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;,故B符合题意;故C不符合题意;故D不符合题意;故选B【点睛】本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.7、C【分析】根据多项式的次数的定义(在多项式中,次数最高的项的次数叫做这个多项式的次数)即可得.【详解】解:2a2b−ab2−ab+1∵2a2b的次数是2+1=3,ab2的次数是1+2=3,ab的次数是1+1=2,∴这个多项式的次数是3,故选:C.【点睛】本题考查了多项式的次数,熟记定义是解题关键.8、B【分析】根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B.【点睛】本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.9、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. ,故该选项错误, B. ,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.10、D【分析】根据去括号法则进行计算即可.【详解】解:代数式-(a-b)进行去括号运算,结果是–a+b.故选:D【点睛】本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.二、填空题1、166【分析】先根据前3个图形的点的个数找到规律,再根据规律求解即可;【详解】解:第1个图中共有4个点,4=1+3×1;第2个图中共有10个点,10=1+3×1+3×2;第3个图中共有19个点,19=1+3×1+3×2+3×3;…,按此规律,第10个图中共有点的个数是1+3×1+3×2+3×3+…+3×10=166;故答案为:166;【点睛】本题考查了规律探求,由前几个图形中点的个数找到规律是解题的关键.2、【分析】根据单项式中系数的概念求解即可.【详解】解:单项式-的系数是:.故答案为:.【点睛】此题考查了单项式中系数的概念,解题的关键是熟练掌握单项式中系数的概念.单项式:由数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.3、3 -5 【分析】根据多项式中常数项(多项式中,不含字母的项即为常数项)和次数(多项式中最高次项的次数)的定义求解即可.【详解】解:中,次数是3次,常数项为-5,故答案为:3;-5.【点睛】题目主要考查多项式中常数项与次数的定义,理解这两个定义是解题关键.4、7【分析】根据已知完全平方式得出2(m-3)x=±2•x•4,求出即可.【详解】解:∵x2+2(m-3)x+16是完全平方式,
∴2(m-3)x=±2•x•4,
解得:m=7或-1,
故答案为:7或-1.【点睛】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.5、3【分析】根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴﹣1+a+b=a+b+c,解得:c=﹣1,a+b+c=b+c+3,解得:a=3,∴数据从左到右依次为﹣1、3、b、﹣1、3、b,∴第9个数与第三个数相同,即b=﹣5,∴每3个数“﹣1、3、﹣5”为一个循环组依次循环,∵2021÷3=673……2,∴第221个格子中的整数与第2个格子中的数相同,为3.故答案为:3【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)先去括号,再合并同类项.(2)先去括号,再合并同类项.【详解】(1)解:原式(2)解:原式【点睛】本题主要是考查了整式的减加运算,熟练掌握整式加减的两个基本步骤:去括号和合并同类项,是求解该类问题的关键.2、(1)(I);(II);(III);(2)见解析.【解析】【分析】(1)(ⅰ)根据题目中的图形和题意,计算出部分④的面积即可;(ⅱ)根据图形,可以所求式子的值即可;(ⅲ)根据(2)中的结果,直接写出所求式子的值即可;(2)将长方形分成两个全等的三角形,然后继续分割两个小一点的全等三角形,依次继续分割即可即可解答(答案不唯一).【详解】解:(1)(ⅰ)由题意可得,部分④的面积是;(ⅱ)由题意可得:;(ⅲ)根据(2)中的结果,可推到出:=;(2)可设计如图所示:(答案不唯一,符合题意即可).【点睛】本题主要考查了数字的变化规律、有理数的混合运算等知识点,明确题意并灵活利用数形结合的思想是解答本题的关键.3、【解析】【分析】利用单项式乘以多项式和完全平方公式的计算法则去括号,然后合并同类项即可.【详解】解: .【点睛】本题主要考查了整式的混合运算,熟知相关计算法则是解题的关键.4、(1)﹣x2y;(2)4【解析】【分析】(1)原式去括号合并同类项即可得到结果;(2)利用非负数的性质求出x与y的值,代入原式计算即可求出值.【详解】解:(1)2(x2y﹣xy2)﹣3(x2y+xy2)+5xy2=2x2y﹣2xy2﹣3x2y﹣3xy2+5xy2=﹣x2y;(2)∵(x+2)2+|y+1|=0,∴x+2=0,y+1=0,解得:x=﹣2,y=﹣1,则﹣x2y=﹣(﹣2)2×(﹣1)=4.【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号与合并同类项法则是解本题的关键.5、,0【解析】【分析】先计算完全平方公式、平方差公式、整式的乘法,再计算整式的加减法,然后将代入计算即可得.【详解】解:原式,,,将代入得:原式.【点睛】本题考查了整式的化简求值,熟练掌握乘法公式和运算法则是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了观察下列各式等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后复习题,共17页。试卷主要包含了下列运算不正确的是,下列等式成立的是,下列去括号正确的是.,下列运算正确的是,已知下列一组数等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列计算正确的是,下列式子正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。