数学七年级下册第六章 整式的运算综合与测试同步训练题
展开
这是一份数学七年级下册第六章 整式的运算综合与测试同步训练题,共18页。试卷主要包含了下列运算正确的是,下列各式中,计算结果为的是,下列结论中,正确的是,若,,求的值是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A.2a+3b=5ab B.x8÷x2=x6 C.(ab3)2=ab6 D.(x+2)2=x2+42、下列说法不正确的是( )A.的系数是 B.2不是单项式C.单项式的次数是2 D.是多项式3、下列去括号正确的是( ).A. B.C. D.4、下列运算正确的是( )A.(a2)3=a6 B.a2•a3=a6C.a7÷a=a7 D.(﹣2a2)3=8a65、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )A.左侧1010厘米 B.右侧1010厘米C.左侧1011厘米 D.右侧1011厘米6、下列各式中,计算结果为的是( )A. B.C. D.7、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.﹣xyz2单项式的系数为﹣1,次数是4C.单项式a的次数是1,没有系数D.多项式2x2+xy+3是四次三项式8、若,,求的值是( )A.6 B.8 C.26 D.209、下列运算正确的是( )A. B. C. D.10、已知数a,b,c在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A.-a-c B.-a-b-c C.-a-2b-c D.a-2b+c第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,长方形ABCD中,AB=2cm,AD=1cm,在直线DA上,将长方形ABCD向右无滑动的滚动下去,(如①为第1次、②为第2次、③为第3次……)则第2022此滚动后得到的长方形最右侧边与CD边的距离为____________cm.2、多项式的次数是_____.3、单项式22a6b3的系数是_____.4、若一个多项式减去等于x-1,则这个多项式是______.5、计算的结果为________.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2.2、如图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形. (1)观察图2,请你直接写出下列三个代数式之间的等量关系为_______;(2)运用你所得到的公式解答下列问题:①若为实数,且,,求的值.②如图3,,分别表示边长为的正方形的面积,且三点在一条直线上,若,求图中阴影部分的面积.3、【教材呈现】图①、图②、图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式: , .(2)图③是用四个长和宽分别为a、b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a-b)2、4ab之间的等量关系: .【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=4时,求m-n的值. (4)当,B=m-3时,化简(A+B)2-(A-B)2. 4、先化简,再求值:,其中.5、在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式的二次项系数,b是绝对值最小的数,c是单项式的次数.请直接写出a、b、c的值并在数轴上把点A,B,C表示出来. ---------参考答案-----------一、单选题1、B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误; x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2、B【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,其中的数字因数是单项式的系数,单项式中所有字母的指数和是单项式的次数,几个单项式的和是多项式,根据定义逐一分析即可.【详解】解:的系数是,故A不符合题意;2是单项式,原说法错误,故B符合题意;单项式的次数是2,故C不符合题意;是多项式,故D不符合题意;故选B【点睛】本题考查的是单项式的定义,单项式的系数与次数,多项式的概念,掌握以上基础概念是解本题的关键.3、B【分析】根据去括号法则分别去括号即可.【详解】解:A、,故A错误;B、,故B正确;C、,故C错误;D、,故D错误.故选:B.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“−”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.4、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.【详解】解:A、,原选项正确,故符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项错误,故不符合题意;故选A.【点睛】本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.5、D【分析】由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.【详解】解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 所以每两次移动的结果是往右移动了1个单位长度, 所以移动第2022次到达点B,则对应的数为: 所以点B在点A点的右侧1011厘米处.故选D【点睛】本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.6、B【分析】根据幂的运算法则即可求解.【详解】A. =,故错误; B. =,正确;C. 不能计算,故错误; D. =,故错误;故选B.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.7、B【分析】根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.【详解】解:A、单项式的系数是,次数是3,故本选项错误不符合题意;B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;C、单项式a的次数是1,系数是1,故本选项错误不符合题意;D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.故选:B.【点睛】本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.8、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:∵,∴,∵,∴,∴.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.9、B【分析】由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;,故B符合题意;故C不符合题意;故D不符合题意;故选B【点睛】本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.10、C【分析】首先根据数轴可以得到a、b、c的正负和绝对值大小,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c>0,b>0,|a|>|c|>|b|,∴a+b<0,a-b<0,a+c<0∴|a+b| - |a-b| + |a+c|=-a-b+a-b﹣a-c=-a-2b-c,故选:C.【点睛】本题主要考查了实数与数轴的对应关系、整式的加减法则及数形结合的方法,解题关键是准确判断a、b、c的正负和绝对值大小.二、填空题1、3034【分析】根据长方形的边长及滚动方向可得①次滚动得,第②次滚动得,第③次滚动得,第④次滚动距离为1,滚动4次的距离为,4次一个循环,滚动2022次,共经理505次循环,再滚动两次,然后加上边AD的距离即可得.【详解】解:第①次滚动得,第②次滚动得,第③次滚动得,第④次滚动距离为1,滚动4次的距离为:,4次一个循环,滚动2022次,则:,滚动距离为:,与CD边的距离为:,故答案为:3034.【点睛】题目主要考查找规律问题,理解题意,根据矩形的边长及滚动方式找出规律是解题关键.2、5【分析】根据多项式次数的概念来解答.【详解】解:代数式次数是五次,故答案为:5.【点睛】本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.3、22【分析】根据单项式系数的定义直接可得出答案【详解】解:单项式的系数是 22 .故答案为22.【点睛】本题考查的知识点是单项式的系数,单项式中的数字因数叫做这个单项式的系数,要注意数字因数前面的符号要带着.4、【分析】由一个多项式减去等于x-1,求这个多项式,可列式为再合并同类项即可.【详解】解:一个多项式减去等于x-1,所以这个多项式为: 故答案为:【点睛】本题考查的是减法的意义,整式的加减运算,正确的列出运算式进行计算是解本题的关键.5、x+x2
【分析】根据整式的运算法则即可求出答案.【详解】解:= = 故答案为:【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则.三、解答题1、﹣8x2﹣15,-47【解析】【分析】先去括号合并同类项,再把x=2代入计算.【详解】解:2(﹣4x2+2x﹣8)﹣(4x﹣1)=﹣8x2+4x﹣16﹣4x+1=﹣8x2﹣15,∵x=2,∴原式=﹣8×22﹣15=﹣32﹣15=﹣47.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.2、(1)(a+b)2=4ab+(a﹣b)2;(2)①m﹣n=4或m﹣n=﹣4;②阴影部分面积为8.【解析】【分析】(1)结合图形可得:大正方形面积=四个矩形的面积+中间小正方形的面积,表示出各个图形的面积,三者关系式即可得;(2)①根据(1)中结论可得:,然后将已知式子的值代入化简即可;②根据题意可得:,且,将其代入完全平方公式中化简可得:,结合图形,求阴影部分面积即可.【详解】解:(1)由图可知,大正方形面积=四个矩形的面积+中间小正方形的面积,即,故答案为:;(2)①∵,,∴,∴,∴或;②∵,分别表示边长为p,q的正方形的面积,∴,,∵,∴,∵,∴∴,,∴, 由图可知,阴影部分面积为:,∴阴影部分面积为8.【点睛】题目主要考查完全平方公式在求几何图形面积中的应用,理解题意,结合图形,熟练运用两个完全平方公式的变形是解题关键.3、(1),;(2);(3);(4)【解析】【分析】(1)根据图①的面积可表示成以为边长的正方形的面积,或表示成2个分别以为边长的正方形的面积加上2个边长分别为的长方形的面积,即;根据图②可以表示成边长为的正方形的面积等于边长为的正方形的面积减去2个边长分别为的长方形的面积再加上边长为的正方形的面积,即;(2)根据图③可知,边长为的正方形的面积减去中间边长为的正方形的面积等于4个边长分别为的长方形的面积,据此即可写出代数式(a+b)2、(a-b)2、4ab之间的等量关系;(3)根据(2)的结论计算即可;(4)由(2)的结论可得,代入数值进行计算即可;【详解】(1)根据图①可得:,根据图②可得: 故答案为:,(2)根据图③可得:故答案为:(3)∵.∴.(4)∵,∴原式=.【点睛】本题考查了完全平方公式与图形的面积,根据完全平方公式变形求值,掌握完全平方公式是解题的关键.4、【解析】【分析】先去括号,再根据合并同类项化简,最后将代入到化简后的结果进行计算即可【详解】解:当时,原式【点睛】本题考查了整式的化简求值,正确的去括号是解题的关键.5、,,,见解析【解析】【分析】根据多项式中次数为2的单项式中的数字因数得出a=-1,根据绝对值最小的数是0得出b=0,根据单项式的次数是所有字母的指数和2+1=3,得出c=2+1=3,再把各数在数轴上表示即可.【详解】解:∵a是多项式的二次项系数,∴a=-1,∵b是绝对值最小的数,∴b=0,∵c是单项式的次数.∴c=2+1=3,,将各数在数轴上表示如下: 【点睛】本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了把多项式按的降幂排列,正确的是,不一定相等的一组是,计算的结果是,下列运算正确的是,下列表述正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共19页。试卷主要包含了下列计算正确的是,下列式子正确的,下列各式中,计算结果为的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共18页。试卷主要包含了下列表述正确的是,下列关于整式的说法错误的是,下列计算正确的是,观察下列这列式子,下列数字的排列等内容,欢迎下载使用。