初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共20页。试卷主要包含了已知,下列运算正确的是,有理数a,下列计算正确的是,不一定相等的一组是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知整数、满足下列条件:=,=-,以此类推,则的值为( )A.-2018 B.-1010 C.-1009 D.-10082、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是( )A.-6 B.-3 C.-8 D.-23、已知,m,n均为正整数,则的值为( ).A. B. C. D.4、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.65、下列运算正确的是( )A. B.C. D.6、有理数a、b在数轴上的位置如图所示,则|a|﹣|a+b|﹣|b﹣a|化简后得( )A.2b+a B.2b﹣a C.a D.b7、下列计算正确的是( )A. B.C. D.8、不一定相等的一组是( )A.2a与a+a B.a2b﹣ba2与0C.a﹣b与﹣(b﹣a) D.2(a﹣b)与2a﹣b9、下列运算正确的是( )A. B.C. D.10、下列运算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
2、如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是 _____.﹣1abc3b ﹣5 … 3、观察规律,填入适当的数:第2018个数是________;第n个数是_____.4、一个单项式满足下列条件:①系数是,②次数是2.请写出一个同时满足上述两个条件的单项式:______.5、若式子x2+16x+k是一个完全平方式,则k=______.三、解答题(5小题,每小题10分,共计50分)1、如图,甲、乙两块长方形苗圃的长与宽相同,分别为,中间都有两条横、竖交错的通道.甲苗圃横、竖通道的宽分别为,乙苗圃横、竖通道的宽分别为.(1)用含x的式子表示两苗圃通道的面积.(2)比较的大小,并求两者之差.2、我们用表示一个三位数,其中x表示百位上的数,y表示十位上的数,z表示个位上的数,即.(1)说明一定是111的倍数;(2)①写出一组a,b,c的取值,使能被7整除,这组值可以是a= ,b= ,c= ;②若能被7整除,则a,b,c三个数必须满足的数量关系是 .3、先化简,再求值:,其中x=2,.4、(1)如表,方程1,方程2,方程3,...是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的横线处;序号方程方程的解1﹣(x﹣2)=1x= 2﹣(x﹣3)=1x=3x=.........(2)方程﹣(x﹣a)=1的解是x=,求a的值.该方程是不是(1)中所给出的一列方程中的一个方程?如果是,它是第几个方程?5、完全平方公式:适当的变形,可以解决很多的数学问题.例如:若,求的值.解:因为所以所以得.根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积. ---------参考答案-----------一、单选题1、B【分析】先根据有理数的加法和绝对值运算求出的值,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:,,,,,,归纳类推得:当为奇数时,;当为偶数时,,则,故选:B.【点睛】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.2、B【分析】先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.【详解】解:第1次输出的结果为;第2次输出的结果为;第3次输出的结果为;第4次输出的结果为;第5次输出的结果为;第6次输出的结果为;第7次输出的结果为;第8次输出的结果为,…,由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,因为,所以第2022次输出的结果与第6次输出的结果相同,即为−3,故选:B.【点睛】本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.3、C【分析】根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.【详解】解:∵∴故选C【点睛】本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.4、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.5、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.6、C【分析】根据图判断a,a+b,b-a的符号,根据绝对值,合并同类项法则化简即可求解.【详解】解:∵a<0<b,且>,∴a<0,a+b<0,b-a>0,∴|a|-|a+b|-| b-a |=-a+a+b-(b-a)=-a+a+b-b+a=a,故选:C.【点睛】本题考查了整式的加减,利用绝对值的意义,合并同类项的法则,解题关键是利用数轴判断绝对值内式子的符号.7、C【分析】由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;故B不符合题意;,运算正确,故C符合题意;故D不符合题意;故选C【点睛】本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.8、D【分析】根据整式的运算计算即可.【详解】A. a+a=2a,故选项A一定相等;B. a2b﹣ba2=0,故选项B一定相等;C.﹣(b﹣a)=a﹣b,故选项C一定相等;D. 2(a﹣b)=2a﹣2b,故选项D不一定相等;故选:D【点睛】此题考查了整式的运算,掌握整式的运算法则和顺序是解答此题的关键.9、C【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项,即可.【详解】解:A. ,故该选项错误, B. ,故该选项错误, C. ,故该选项正确, D. ,故该选项错误,故选C.【点睛】本题主要考查同底数幂的乘除法法则以及积的乘方法则,熟练掌握上述法则是解题的关键.10、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.二、填空题1、8【分析】设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.【详解】解:设长方形的长为a,宽为b, 由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①, 由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②, 由①②得,2ab+34=50, 所以ab=8, 即长方形的面积为8, 故答案为:8.【点睛】本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.2、3【分析】根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴﹣1+a+b=a+b+c,解得:c=﹣1,a+b+c=b+c+3,解得:a=3,∴数据从左到右依次为﹣1、3、b、﹣1、3、b,∴第9个数与第三个数相同,即b=﹣5,∴每3个数“﹣1、3、﹣5”为一个循环组依次循环,∵2021÷3=673……2,∴第221个格子中的整数与第2个格子中的数相同,为3.故答案为:3【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.3、 【分析】先观察总结规律,然后代入规律求解即可.【详解】解:根据给出的数分子是从小到大的正整数,分母比分子大1;奇数项是负数,偶数项是正数,用(-1)n调整符号;第2018个数是,第n个数是.
故答案为,.【点睛】本题考查规律型:数字的变化类,能从题中信息正确总结出规律,是解决此类题目的关键.4、(答案不唯一)【详解】根据题意中单项式的系数与次数是2,写出一个单项式即可.例如,故答案为:(答案不唯一)【点睛】本题考查了单项式的定义,单项式的次数与系数,理解单项式的定义是解题的关键.单项式是由数或字母的乘积组成的代数,单独的一个数或一个字母也叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5、64【分析】根据完全平方公式解答即可.【详解】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.三、解答题1、(1),;(2),【解析】【分析】(1)利用长乘以宽将两条小路的面积相加计算即可;(2)由x>0,得到36x>33x,推出,根据整式加减法计算两者的差.【详解】解:(1),;(2)∵x>0,∴36x>33x,∴,即,.【点睛】此题考查了列代数式,式子的大小比较,整式的加减计算法则,根据图形正确列出代数式是解题的关键.2、(1)证明见解析;(2)①;②或或【解析】【分析】(1)列代数表示,再合并同类项,再利用乘法的分配律进行变形,从而可得答案;(2)①由,可得一定是7的因数,从而可得答案;②由能被7整除,可得一定是7的因数,而都为至的正整数,从而可得答案.【详解】解:(1) 一定是的倍数.(2)① ,而不是的因数,所以一定是7的因数,令 则 故答案为:(答案不唯一)② 能被7整除,所以一定是7的因数,而都为至的正整数,则a,b,c三个数必须满足的数量关系为:或或【点睛】本题考查的是列代数式,乘法的分配律的应用,合并同类项,整除的含义,掌握“用代数式表示一个三位数”是解本题的关键.3、3x﹣2y,.【解析】【分析】原式去括号,然后根据整式的加减计算法则合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=2x﹣4y﹣x+2y+2x=3x﹣2y,当x=2,时,原式=.【点睛】本题主要考查了整式的化简求值,去括号,熟知相关计算法则是解题的关键.4、(1);(2),方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【解析】【分析】(1)根据去括号,移项,合并,系数化为1的步骤求解即可;(2)把代入方程中求出a的值,然后找出(1)中方程的规律即可得到答案.【详解】解:(1)去括号得:,移项得:,合并得:,系数化为1得:,故答案为:;(2)∵方程的解是,∴,∴,解得,∵方程的解为,方程的解为,方程的解为,∴方程的解为,∴方程是(1)中所给出的一列方程中的一个方程,且是第11个方程.【点睛】本题主要考查了解一元一次方程,数字类的规律型探索,解题的关键在于能够熟练掌握解一元一次方程的方法.5、(1);(2)17;(3)【解析】【分析】(1)仿照题意,利用完全平方公式求值即可;(2)先求出,然后仿照题意利用完全平方公式求解即可;(3)设AC的长为a,BC的长为b,则AB=AC+BC=a+b=6,,由,得到,由此仿照题意,利用完全平方公式求解即可.【详解】解:(1)∵,,∴,∴,∴,∴;(2)∵,,∴,,∴,故答案为:17;(3)设AC的长为a,BC的长为b,∴AB=AC+BC=a+b=6,∴∵,∴,∴,∴,又∵四边形BCFG是正方形,∴CF=CB,∴.【点睛】本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时练习,共16页。试卷主要包含了下列计算正确的是,多项式+1的次数是,已知,,则,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共17页。试卷主要包含了下列运算正确的是,下列关于整式的说法错误的是,下列运算中,正确的是,计算的结果是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了下列运算正确的是,下列计算中,结果正确的是,下列式子正确的是,下列计算正确的是等内容,欢迎下载使用。