初中数学北京课改版七年级下册第六章 整式的运算综合与测试测试题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试测试题,共15页。试卷主要包含了下列运算不正确的是,计算的结果是,下列运算正确的是,下列判断正确的是,多项式的次数和常数项分别是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A. B. C. D.2、下列结论中,正确的是( )A.单项式的系数是3,次数是2B.﹣xyz2单项式的系数为﹣1,次数是4C.单项式a的次数是1,没有系数D.多项式2x2+xy+3是四次三项式3、下列运算中正确的是( )A.b2•b3=b6 B.(2x+y)2=4x2+y2C.(﹣3x2y)3=﹣27x6y3 D.x+x=x24、下列运算不正确的是( )A. B. C. D.5、计算的结果是( )A. B. C. D.6、下列运算正确的是( )A.3a+2a=5a2 B.﹣8a2÷4a=2aC.4a2•3a3=12a6 D.(﹣2a2)3=﹣8a67、下列判断正确的是( )A.3a2bc与bca2不是同类项B.和都是单项式C.单项式﹣x3y2的次数是3D.多项式3x2﹣y+2xy2是三次三项式8、若x2+mxy+25y2是一个完全平方式,那么m的值是( )A.±10 B.-5 C.5 D.±59、多项式的次数和常数项分别是( )A.1和 B.和 C.2和 D.3和10、如图所示的运算程序中,若开始输入x的值为2,则第2022次输出的结果是( )A.-6 B.-3 C.-8 D.-2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x2+4x﹣4=0,则3x2+12x﹣5=___.2、化简得______.3、已知,则的值为________.4、有一列按规律排列的代数式:b,2b﹣a,3b﹣2a,4b﹣3a,5b﹣4a,…,相邻两个代数式的差都是同一个整式,若第1011个代数式的值为3,则前2021个代数式的和的值为_______.5、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.三、解答题(5小题,每小题10分,共计50分)1、如图①是将一个边长为的大正方形的一角截去一个边长为的小正方形(阴影部分),然后将图①剩余部分拼接成如图②的一个大长方形(阴影部分).(1)请用两种不同的方法列式表示图②中大长方形的面积:方法一: ; 方法二: ;(2)根据探究的结果,直接写出这三个式子之间的等量关系;(3)利用你发现的结论,求的值.2、化简求值 ,其中,3、先化简,再求值:4、先化简,再求值:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2),其中x=﹣2,y=.5、化简.(1)2m﹣3n﹣5n﹣7m;(2)4(x2﹣xy+6)﹣3(2x2﹣xy). ---------参考答案-----------一、单选题1、B【分析】由合并同类项可判断A,由同底数幂的乘法运算判断B,由同底数幂的除法运算判断C,由积的乘方运算与幂的乘方运算判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;,故B符合题意;故C不符合题意;故D不符合题意;故选B【点睛】本题考查的是合并同类项,同底数幂的乘法运算,同底数幂的除法运算,积的乘方运算与幂的乘方运算,掌握以上基础运算的运算法则是解题的关键.2、B【分析】根据多项式的概念以及单项式系数、次数的定义对各选项分析判断即可得解.【详解】解:A、单项式的系数是,次数是3,故本选项错误不符合题意;B、﹣xyz2的系数是-1,次数是4,故本选项正确符合题意;C、单项式a的次数是1,系数是1,故本选项错误不符合题意;D、多项式2x2+xy+3是二次三项式,故本选项错误不符合题意.故选:B.【点睛】本题考查了多项式和单项式,熟记单项式数与字母的积的代数式,多项式是几个单项式的和等相关概念是解题的关键.3、C【分析】根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.【详解】解:A、b2•b3=b5,不符合题意;B、(2x+y)2=4x2+4xy+y2,不符合题意;C、(﹣3x2y)3=﹣27x6y3,符合题意;D、x+x=2x,不符合题意.故选:C.【点睛】本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.4、C【分析】根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可直接进行排除选项.【详解】解:A、,原选项正确,故不符合题意;B、,原选项正确,故不符合题意;C、与不是同类项,不能合并,原选项错误,故符合题意;D、,原选项正确,故不符合题意;故选C.【点睛】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项是解题的关键.5、A【分析】先计算乘方,再计算除法,即可求解.【详解】解:.故选:A【点睛】本题主要考查了幂的混合运算,熟练掌握幂的乘方,同底数相除的法则是解题的关键.6、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可.【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D.【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键.7、D【分析】选项A根据同类项的定义判断即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;选项B、C根据单项式的定义判断即可,单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据多项式的定义判断即可,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.【详解】解:A、 3a2bc与bca2所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B、是多项式,故原说法错误,故本选项不合题意;C、单项式﹣x3y2的次数是5,故本选项不合题意;D、多项式3x2﹣y+2xy2是三次三项式,故本选项符合题意;故选:D.【点睛】本题考查了同类项,单项式和多项式,熟记相关定义是解答本题的关键.8、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.9、D【分析】多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.【详解】解:有题意可知多项式的次数为3,常数项为故选D.【点睛】本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.10、B【分析】先分别求出第1-8次输出的结果,再归纳类推出一般规律,由此即可得出答案.【详解】解:第1次输出的结果为;第2次输出的结果为;第3次输出的结果为;第4次输出的结果为;第5次输出的结果为;第6次输出的结果为;第7次输出的结果为;第8次输出的结果为,…,由此可知,从第2次开始,输出的结果是以−4,−2,−1,−6,−3,−8循环往复的,因为,所以第2022次输出的结果与第6次输出的结果相同,即为−3,故选:B.【点睛】本题考查了程序流程图与代数式求值,正确归纳类推出一般规律是解题关键.二、填空题1、7【分析】把已知条件变形为x2+4x=4,然后利用整体代入法即可求得代数式的值.【详解】∵x2+4x﹣4=0∴x2+4x=4∴3x2+12x﹣5=3(x2+4x)﹣5=3×4−5=7故答案为:7【点睛】本题考查了用整体代入法求代数式的值,关键是抓住所求值的代数式与已知代数式之间的关系,从而用整体代入法即可解决.2、【分析】去括号再合并同类项即可.【详解】故答案为:【点睛】本题考查了整式的加减运算,其实质是去括号、合并同类项.但要注意运用乘法分配律时不要出现漏乘.3、25【分析】把已知条件,根据完全平方公式展开,然后代入数据计算即可求解.【详解】解:∵,
∴,
∵,
∴.
故答案是:25.【点睛】本题考查了完全平方公式,解题的关键是熟记公式结构,灵活运用.4、6063【分析】相邻两个代数式的差都是b-a,且第1011个代数式的值为1011b-1010a=3,将前2021个代数式全部求出后,求出它们的和后将1011b-1010a代入即可求出答案.【详解】解:由题意可知:第1011个代数式的值为1011b-1010a=3第2020个代数式为:2020b-2019a,第2021个代数式为:2021b-2020a,∴前2021个代数式的和的值:b+(2b-a)+…+(2021b-2020a)=(1+2+3+⋯+2021)b-(1+2+3+⋯+2020)a=2021(1011b-1010a)=2021×3=6063故答案为:6063【点睛】本题考查代数式求值,解题的关键是将前2021个代数式的和进行化简.5、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.三、解答题1、(1);(2);(3)708000【解析】【分析】(1)方法1:用a为边长的正方形面积减去小正方形面积即可;方法2:直接读取图②中大长方形的长与宽,再求面积;(2)根据a2-b2和(a+b)(a-b)表示同一个图形的面积进行判断;根据图形可以写出等量关系;(3)根据a2-b2=(a+b)(a-b),进行计算即可得到答案.【详解】解:(1)由图可知,方法1:图②中大长方形的面积为:a2-b2,方法2:图②中大长方形的面积为:(a+b)(a-b),故答案为:a2-b2,(a+b)(a-b);(2)由图可得,这三个式子之间的等量关系是:a2-b2=(a+b)(a-b),故答案为:a2-b2=(a+b)(a-b);(3)解:原式===708000【点睛】本题主要考查了平方差公式的几何背景,解决问题的关键是运用两种不同的方式表达同一个图形的面积,进而得出一个等式,这是数形结合思想的运用.2、+y,-17【解析】【分析】根据整式加减的运算法则“一般地,几个整式相加减,如果有括号就先去括号,然后合并同类项”进行解答即可得.【详解】解:原式==,当,时,.【点睛】本题考查了整式的化简求值,解题的关键是掌握整式加减的运算法则.3、-5+5xy,0【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】原式= =-5+5xy,当x=1,y=-1时,原式= -5×+5×1×(-1)=0.【点睛】本题考查了去括号法则,合并同类项,正确去括号,合并同类项是解题的关键.4、x2,4【解析】【分析】原式去括号,合并同类项进行化简,然后再代入求值.【详解】解:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2)=3x2﹣xy+2y2﹣2x2+xy﹣2y2=x2,把x=﹣2代入得,原式=(﹣2)2=4.【点睛】本题主要考查整式的化简,关键是要牢记去括号的法则和合并同类项的法则.5、(1)﹣5m﹣8n;(2)﹣2x2﹣xy+24【解析】【分析】(1)合并同类项进行化简;(2)原式去括号,合并同类项进行化简.【详解】解:(1)原式=(2﹣7)m+(﹣3﹣5)n=﹣5m﹣8n;(2)原式=4x2﹣4xy+24﹣6x2+3xy=﹣2x2﹣xy+24.【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了下列运算正确的是,下列去括号正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列说法正确的是,计算的结果是,下列计算正确的有,下列说法中等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共17页。试卷主要包含了下列式子,下列计算正确的是等内容,欢迎下载使用。