![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步综合训练练习题01](http://img-preview.51jiaoxi.com/2/3/12686615/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步综合训练练习题02](http://img-preview.51jiaoxi.com/2/3/12686615/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第26章概率初步综合训练练习题03](http://img-preview.51jiaoxi.com/2/3/12686615/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第26章 概率初步综合与测试当堂检测题
展开沪科版九年级数学下册第26章概率初步综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法不正确的是( )
A.不可能事件发生的概率是0
B.概率很小的事件不可能发生
C.必然事件发生的概率是1
D.随机事件发生的概率介于0和1之间
2、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )
A.12 B.15 C.18 D.23
3、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为( )
A. B. C. D.
4、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是( )
A. B. C. D.
5、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )
A.1 B. C. D.
6、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )
A. B. C. D.
7、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为( )
A. B. C. D.
8、下列事件中,属于必然事件的是( )
A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球
C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边
9、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
10、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.
2、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:
种子数量 | 100 | 300 | 500 | 1000 | 3000 |
出芽数量 | 99 | 282 | 480 | 980 | 2910 |
随着实验种子数量的增加,可以估计A种子出芽的概率是 _____.
3、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.
4、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.
5、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.
三、解答题(5小题,每小题10分,共计50分)
1、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.
(1)求摸出一个球是白球的概率.
(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).
2、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.
摸球的次数n | 100 | 150 | 200 | 500 | 700 | 1000 |
摸到黑球的次数m | 24 | 29 | 60 | 126 | 177 | 251 |
摸到黑球的频率 | 0.24 | 0.193 | 0.30 | 0.252 | 0.253 | a |
(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)
(2)估算袋中白球的个数.
3、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.
(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;
(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.
4、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.
5、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)
(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;
(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大
-参考答案-
一、单选题
1、B
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;
B. 概率很小的事件也可能发生,故该选项不正确,符合题意;
C. 必然事件发生的概率是1,故该选项正确,不符合题意;
D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;
故选B
【点睛】
本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
2、A
【分析】
由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.
【详解】
解:设盒子中红球的个数x,根据题意,得:
解得x=12,
所以盒子中红球的个数是12,
故选:A.
【点睛】
本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.
3、C
【分析】
从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.
【详解】
解:∵装有7个只有颜色不同的球,其中4个黑球,
∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.
故选:C.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
4、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.
5、B
【分析】
根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.
【详解】
解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,
a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,
关于x的方程为一元二次方程的概率是,
故选择B.
【点睛】
本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.
6、A
【分析】
如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.
【详解】
解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,
骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,
所以骰子落地时朝上的数为偶数的概率是
故选A
【点睛】
本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.
7、D
【分析】
在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.
【详解】
解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,
红球有:个,
则随机摸出一个红球的概率是:.
故选:D.
【点睛】
本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.
8、D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解;A、小明买彩票中奖是随机事件,不符合题意;
B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;
C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;
D、三角形两边之和大于第三边是必然事件,符合题意;
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
10、D
【分析】
先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,
∴P小张从不同的出入口进出的结果数,
故选D.
【点睛】
本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.
二、填空题
1、
【分析】
根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.
【详解】
解:由图可知,摸出黑球的概率约为0.2,
故答案为:0.2.
【点睛】
本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.
2、
【分析】
根据概率的公式解题:A种子出芽的概率=A种子出芽数量÷玉米种子总数量.
【详解】
解:
故答案为:.
【点睛】
本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间.
3、6
【分析】
由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.
【详解】
解:由题意可得,
20×0.30=6(个),
即袋子中黄球的个数最有可能是6个.
故答案为:6.
【点睛】
本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.
4、
【分析】
根据简单概率公式进行计算即可.
【详解】
解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.
则指针对准红色区域的可能性大小是
故答案为:
【点睛】
本题考查了几何概率,立即题意是解题的关键.
5、
【分析】
指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.
【详解】
解:观察转盘灰色区域的面积与总面积的比值为
故答案为:.
【点睛】
本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.
三、解答题
1、(1);(2)
【分析】
(1)根据概率公式列式计算即可得解;
(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解.
【详解】
解(1)摸出一个球的所有可能结果总数,摸到是白球的可能结果数,
摸出一个球是白球的概率为.
(2)画树状图如下:
由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,
所以两次摸出颜色相同的球的概率.
【点睛】
本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率所求情况数与总情况数之比
2、(1)0.251;0.25;(2)12个
【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)用概率公式列出方程求解即可.
【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
故答案为:0.251;0.25.
(2)设袋中白球为x个,
x=12,
经检验x=12是方程的解,
答:估计袋中有2个白球.
【点睛】
此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
3、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)画出树状图即可得解;
【详解】
(1)根据题意可得,小球的颜色是白色的概率是;
故答案是:;
(2)根据题意画出树状图如下:
则两次摸出的小球颜色相同的概率为.
【点睛】
本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.
4、
【分析】
根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.
【详解】
解:由题意可得,所有等可能的情况如下:
| 白色1 | 白色2 | 红色 |
白色1 |
| (白色2,白色1) | (红色,白色1) |
白色2 | (白色1,白色2) |
| (红色,白色2) |
红色 | (白色1,红色) | (白色2,红色) |
|
由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,
∴一次摸出两个球“都是白球”的概率=.
【点睛】
本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
5、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【分析】
(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
(2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.
【详解】
(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,
共有6种等可能的结果数,其中三题全答对的结果数为1
所以小明顺利通关的概率=
故通关的概率为
(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:
或
共有6种等可能的结果数,其中三题全答对的结果数为1,
所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=
若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C)
共有8种等可能的结果数,其中三题全答对的结果数为1
所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=
故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
沪科版九年级下册第26章 概率初步综合与测试同步达标检测题: 这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共17页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试达标测试: 这是一份沪科版九年级下册第26章 概率初步综合与测试达标测试,共17页。试卷主要包含了下列说法正确的是,下列说法中正确的是,下列事件中,是必然事件的是,下列四幅图的质地大小等内容,欢迎下载使用。
2021学年第26章 概率初步综合与测试巩固练习: 这是一份2021学年第26章 概率初步综合与测试巩固练习,共18页。试卷主要包含了以下事件为随机事件的是,下列事件是必然事件的是,下列事件中,是必然事件的是,下列事件中,属于随机事件的是,书架上有本小说等内容,欢迎下载使用。