所属成套资源:高考数学(文数)二轮专题突破训练卷 (教师版+学生版)
高考数学(文数)二轮专题突破训练15《直线与圆》 (教师版)
展开这是一份高考数学(文数)二轮专题突破训练15《直线与圆》 (教师版),共10页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
专题能力训练15 直线与圆
一、能力突破训练
1.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为( )
A.1 B.2 C. D.2
2.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为( )
A. B. C. D.
3.直线y=kx+3与圆(x-1)2+(y+2)2=4相交于M,N两点,若|MN|≥2,则实数k的取值范围是( )
A. B.
C. D.
4.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )
A.2 B.8 C.4 D.10
5.已知直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|= .
6.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 ,半径是 .
7.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为 .
8.已知P是抛物线y2=4x上的动点,过P作抛物线准线的垂线,垂足为M,N是圆(x-2)2+(y-5)2=1上的动点,则|PM|+|PN|的最小值是 .
9.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-y=4相切.
(1)求☉O的方程;
(2)若☉O上有两点M,N关于直线x+2y=0对称,且|MN|=2,求直线MN的方程;
(3)设☉O与x轴相交于A,B两点,若圆内的动点P使|PA|,|PO|,|PB|成等比数列,求的取值范围.
10.已知☉O:x2+y2=4,点A(,0),以线段AB为直径的圆内切于☉O,记点B的轨迹为Γ.
(1)求曲线Γ的方程;
(2)直线AB交☉O于C,D两点,当B为CD的中点时,求直线AB的方程.
11.已知过点A(0,1)且斜率为k的直线l与☉C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
二、思维提升训练
12.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交 C.外切 D.相离
13.已知直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )
A.[2,6] B.[4,8]
C.[,3] D.[2,3]
14.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是 .
15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P';当P是原点时,定义P的“伴随点”为它自身.现有下列命题:
①若点A的“伴随点”是点A',则点A'的“伴随点”是点A;
②单位圆上的点的“伴随点”仍在单位圆上;
③若两点关于x轴对称,则它们的“伴随点”关于y轴对称;
④若三点在同一条直线上,则它们的“伴随点”一定共线.
其中的真命题是 .(写出所有真命题的序号)
16.在平面直角坐标系xOy中,已知☉C1:(x+3)2+(y-1)2=4和☉C2:(x-4)2+(y-5)2=4.
(1)若直线l过点A(4,0),且被☉C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与☉C1和☉C2相交,且直线l1被☉C1截得的弦长与直线l2被☉C2截得的弦长相等,试求所有满足条件的点P的坐标.
17.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围.
专题能力训练15 直线与圆
一、能力突破训练
1.C 解析 由题意可知圆心坐标为(-1,0),故圆心到直线y=x+3的距离d=,故选C.
2.B 解析 由题意知,△ABC外接圆的圆心是直线x=1与线段AB垂直平分线的交点,设为P,而线段AB垂直平分线的方程为y-,它与x=1联立得圆心P坐标为,则|OP|=.
3.B 解析 当|MN|=2时,在弦心距、半径和半弦长构成的直角三角形中,可知圆心(1,-2)到直线y=kx+3的距离为=1,即=1,解得k=-.若使|MN|≥2,则k≤-.
4.C 解析 设圆的方程为x2+y2+Dx+Ey+F=0,将点A,B,C代入,得解得
则圆的方程为x2+y2-2x+4y-20=0.
令x=0得y2+4y-20=0,
设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根,由根与系数的关系,得y1+y2=-4,y1y2=-20,故|MN|=|y1-y2|==4.
5.2 解析 圆的方程可化为x2+(y+1)2=4,故圆心C(0,-1),半径r=2,圆心到直线y=x+1的距离d=,
所以弦长|AB|=2=2=2.
6.(-2,-4) 5 解析 由题意,可得a2=a+2,解得a=-1或2.当a=-1时,方程为x2+y2+4x+8y-5=0,即(x+2)2+(y+4)2=25,故圆心为(-2,-4),半径为5;当a=2时,方程为4x2+4y2+4x+8y+10=0,+(y+1)2=-不表示圆.
7.8 解析 ∵直线=1过点(1,2),
∴=1.
∵a>0,b>0,∴2a+b=(2a+b)=4+≥4+2=8.
当且仅当b=2a时“=”成立.
8.-1 解析 抛物线y2=4x的焦点为F(1,0),圆(x-2)2+(y-5)2=1的圆心为C(2,5),根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,进而推断出当P,C,F三点共线时,点P到点C的距离与点P到抛物线的焦点距离之和的最小值为|FC|=,故|PM|+|PN|的最小值是|FC|-1=-1.
9.解 (1)依题意,☉O的半径r等于原点O到直线x-y=4的距离,
即r==2.所以☉O的方程为x2+y2=4.
(2)由题意,可设直线MN的方程为2x-y+m=0.
则圆心O到直线MN的距离d=.
由垂径定理,得+()2=22,即m=±.
所以直线MN的方程为2x-y+=0或2x-y-=0.
(3)设P(x,y),由题意得A(-2,0),B(2,0).
由|PA|,|PO|,|PB|成等比数列,
得=x2+y2,
即x2-y2=2.
因为=(-2-x,-y)·(2-x,-y)=2(y2-1),
且点P在☉O内,所以由此得y2<1.
所以的取值范围为[-2,0).
10. 解 (1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.
取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,
所以|AB|+2|OM|=|AB|+|A'B|=4>|A'A|.
所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中,a=2,c=,b=1,故曲线Γ的方程为+y2=1.
(2)因为B为CD的中点,所以OB⊥CD,
则.设B(x0,y0),
则x0(x0-)+=0.
又=1,
解得x0=,y0=±.
则kOB=±,kAB=∓,则直线AB的方程为y=±(x-),即x-y-=0或x+y-=0.
11.解 (1)由题设,可知直线l的方程为y=kx+1.
因为l与C交于两点,所以<1.
解得<k<.
所以k的取值范围为.
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=,x1x2=.
=x1x2+y1y2
=(1+k2)x1x2+k(x1+x2)+1=+8.
由题设可得+8=12,解得k=1,
所以l的方程为y=x+1.
故圆心C在l上,所以|MN|=2.
二、思维提升训练
12.B 解析 圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.
所以圆心到直线x+y=0的距离d=a.
所以直线x+y=0被圆M所截弦长为2=2a,
由题意可得a=2,故a=2.
圆N的圆心N(1,1),半径r=1.
而|MN|=,
显然R-r<|MN|<R+r,所以两圆相交.
13. A 解析 设圆心到直线AB的距离d==2.
点P到直线AB的距离为d'.易知d-r≤d'≤d+r,即≤d'≤3.
又AB=2,
∴S△ABP=·|AB|·d'=d',
∴2≤S△ABP≤6.
14.[-5,1] 解析 设P(x,y),由≤20,易得x2+y2+12x-6y≤20.
把x2+y2=50代入x2+y2+12x-6y≤20得2x-y+5≤0.
由可得
由2x-y+5≤0表示的平面区域及P点在圆上,可得点P在圆弧EPF上,所以点P横坐标的取值范围为[-5,1].
15.②③ 解析 对于①,若令P(1,1),则其伴随点为P',而P'的伴随点为(-1,-1),而不是P,故①错误;对于②,令单位圆上点的坐标为P(cos x,sin x),其伴随点为P'(sin x,-cos x)仍在单位圆上,所以②正确;③设A(x,y)与B(x,-y)为关于x轴对称的两点,则A的“伴随点”为A',B点的伴随点为B',A'与B'关于y轴对称,故③正确;对于④,取直线l:y=1.
设其“伴随曲线”为C,其上任一点M(x,y),
与其对应的直线l上的点为N(t,1).
则由定义可知
①2+②2得x2+y2==x,
整理得x2+y2-x=0,显然不是一条直线.
故④错误.所以正确的序号为②③.
16.解 (1)设直线l的方程为y=k(x-4),即kx-y-4k=0,由垂径定理,得圆心C1到直线l的距离d==1.
由点到直线距离公式,得=1,化简,得24k2+7k=0,解得k=0或k=-.
当k=0时,直线l的方程为y=0;
当k=-时,直线l的方程为y=-(x-4),即7x+24y-28=0.
故所求直线l的方程为y=0或7x+24y-28=0.
(2)设点P坐标为(m,n),直线l1,l2的方程分别为y-n=k(x-m)和y-n=-(x-m),
即kx-y+n-km=0,-x-y+n+m=0.
∵直线l1被☉C1截得的弦长与直线l2被☉C2截得的弦长相等,两圆半径相等,
∴由垂径定理得圆心C1到直线l1与圆心C2到直线l2的距离相等.
∴,
化简,得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.
∵关于k的方程有无穷多解,
∴
解得
故点P坐标为.
17.解 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.
(1)由圆心N在直线x=6上,可设N(6,y0).
因为圆N与x轴相切,与圆M外切,
所以0<y0<7,于是圆N的半径为y0,
从而7-y0=5+y0,解得y0=1.
因此,圆N的标准方程为(x-6)2+(y-1)2=1.
(2)因为直线l∥OA,所以直线l的斜率为=2.
设直线l的方程为y=2x+m,即2x-y+m=0,
则圆心M到直线l的距离
d=.
因为BC=OA==2,
而MC2=d2+,
所以25=+5,解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.
(3)设P(x1,y1),Q(x2,y2).
因为A(2,4),T(t,0),,
所以 ①
因为点Q在圆M上,
所以(x2-6)2+(y2-7)2=25. ②
将①代入②,得(x1-t-4)2+(y1-3)2=25.
于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,
从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,
所以5-5≤≤5+5,
解得2-2≤t≤2+2.
因此,实数t的取值范围是[2-2,2+2].
相关试卷
这是一份高考数学(文数)二轮专题突破训练19《概率》 (教师版),共8页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
这是一份高考数学(文数)二轮专题突破训练17《直线与圆锥曲线》 (学生版),共4页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
这是一份高考数学(文数)二轮专题突破训练17《直线与圆锥曲线》 (教师版),共11页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。